|
References [1] Agarwal, Ravi P., Meehan, Maria. and O’regan, Donal., Fixed point theory and applications, Cambridge University, 2001. [2] Berinde, V., Iterative Approximation of Fixed Points, Editura Efemeride, Baia Mare, 2002. [3] Berinde, V., On the convergence of the Ishikawa iteration in the class of quasi contractive operators, Acta Math. Univ. Comenianae, 73 (2004),119-126. [4] Berinde, V., A common fixed point theorem for nonself mappings, Miskolc Mathematical Notes, 5, (2004),137-144. [5] Brown, Robert. F., Fixed Point Theory and Its Applications, American Mathematical Society, 1986. [6] Chatterjea, S.K., Fixed-point theorems, C.R. Acad. Bulgare Sci., 25 (1972), 727-730. [7] Ciric, Lj. B., A generalization of Banach’s contraction principle, Proc. Am. Math. Soc. 45 (1974) 267-273. [8] Ishikawa, S., Fixed points by a new iteration method Proc. Amer. Math. Soc. 44 (1) (1974), 147-150. [9] Istratescu, Vasile I., Fixed Point Theory, D. Reidel Publishing Company, Dordrecht, Holland, 1981. [10] Jiang, Boju., Topological Fixed Point Theory and Applications, Springer-Verlag Berlin Heidelberg, 1989. [11] Kada, O., Suzuki, T., and Takahashi, W., Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japan., 44 (1996), 381-391. [12] Kannan, R., Some results on fixed points, Bull. Calcutta Math. Soc. 10 (1968), 71-76. [13] Kannan, R., Some results on fixed point - II, Amer. Math. Monthly, 76 (1969), 405-408. [14] Kannan, R., Some results on fixed points. III Fund. Math. 70 (1971), 169-177. [15] Kannan, R., Construction of fixed points of a class of nonlinear mappings J. Math. Anal. Appl. 41 (1973), 430-438. [16] Kiang, Tsai-han., The theory of fixed point classes, Springer-Verlag Berlin Heidelberg and Science Press Beijing, 1989 [17] Kirk, W. A. and Sims, B., Handbook of Metric Fixed Point Theory, Kluwer Academic Publishers, 2001. [18] Kirk, W. A. and Goebel, Kazimierz., Topics in metric fixed point theory, Cambridge University, 1990. [19] Nadler, S.B., Jr., Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475-488. [20] Rhoades, B.E., Comments on two fixed point iteration methods, J. Math. Anal. Appl. 56 (2) (1976), 741-750. [21] Rhoades, B.E., A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., 226 (1977), 257-290. [22] Rhoades, B.E., Contractive definitions revisited, Contemporary Math. 21 (1983), 189-205. [23] Ulrich, Hanno., Fixed Point Theory of Parametrized Equivariant Maps, Springer-Verlag Berlin Heidelberg, 1988. [24] Zamfirescu, T., Fix point theorems in metric spaces, Arch. Math. (Basel), 23 (1972), 292-298.
|