跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 12:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭清燕
研究生(外文):Qing-Yan Xiao
論文名稱:以鑄漿成形法製作三鈣磷酸/氧化鋁生醫陶瓷複合材料之製程與性質之研究
論文名稱(外文):Study on the processing and properties of the tricalcium phosphate/alumina bioceramic composite by slip casting
指導教授:黃肇瑞黃肇瑞引用關係
指導教授(外文):Jow-Lay Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:76
中文關鍵詞:三鈣磷酸生醫陶瓷鑄漿成形氧化鋁
外文關鍵詞:tricalcium phosphatebioceramicslip castingalumina
相關次數:
  • 被引用被引用:0
  • 點閱點閱:265
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中 文 摘 要
氧化鋁和三鈣磷酸鹽在生醫陶瓷中,分別是強度及活性最佳之材料,應用在人體均有數十年之歷史。本研究藉由製程設計將兩者結合,在生醫材料上的性質,做互補上的配合,目的在於討論此製程技術並探討此法在生醫材料應用上的可行性。
研究中採用自製的β相三鈣磷酸鹽,乃是由碳酸鈣與磷酸氫氨粉末共燒合成,藉由熱重/熱差以及X-ray繞射分析,討論其反應機制,推測 (NH4)2HPO4於200∼230℃分解,而分解的產物HPO42+在230∼760 ℃的溫度區間內持續進行反應,最終形成PO43-,結合CaCO3分解產生的Ca2+離子,得到β-TCP (Ca3(PO4)2),反應過程中NH3 、H2O 、 CO2造成於790℃前重量持續損失,而於800℃以上之溫度持溫可以得到單一晶相β-TCP。
進一步將自製的β相三鈣磷酸鹽製作成一巨孔隙結構之基材,利用鑄漿成形技術,將孔隙以氧化鋁泥漿填滿,而後藉由25MPa的機械壓力於1350℃持溫5小時,進行熱壓燒結,使β相三鈣磷酸鹽與氧化鋁結合,結果顯示熱壓過後,複合材料密度達98%,彎曲強度為31.08±4.02 MPa,機械強度因β相三鈣磷酸鹽中的缺陷產生而較低。

英 文 摘 要
Alumina was the first bioceramic widely used in clinic. It has been used in load-bearing hip prostheses and dental implants because of its combination of excellent corrosion resistance, high wear resistance and high strength. β-tricalcium phosphate is so far ideal candidate of synthetic bone replacement materials due to high biocompatiblity and osteoconduction. However, the mechanical behavior ofβ-tricalcium phosphate strongly influences their applications. This work investigated the feasibility of combining alumina withβ-tricalcium phosphate.
The formation ofβ-tricalcium phosphate(Ca3(PO4)2,β-TCP) from dibasic ammonium phosphate((NH4)2HPO4) and calcium carbonate(Ca3CO3) was investigated using DTA/TGA and X-ray diffraction(XRD). These analyses revealed that (NH4)2HPO4 decomposed at 200~230℃, and HPO42- condensed to be P2O74- in a temperature range of 230~760℃. P2O74-will then reacted with OH- to form PO43-. Calcium carbonate decomposed completely at about 780℃,and Ca2+reacted with PO43- to form Ca3(PO4)2. β-TCP powder was finally identified by XRD.
β-TCP porous perform was made by billing. β-TCP slurry in a sponge followed by drying, degreasing and sintering. alumina slurry was then infiltrated into the porousβ-TCP perform. The whole part were hot pressed to become a composite. The density of composite was 98% and the bending strength was 31.08±4.02MPa.

總目錄
中文摘要……………………………………………………...………………………….Ⅰ
英文摘要……………………………………………………..…………………………..Ⅱ
圖目錄……………………………………………………………………………………Ⅵ
表目錄…………………………………………………………………………………....Ⅷ
第一章緒論……………………………………………………………….…………….1
1-1.前言…………………………………………………………………………………...1
1-2.研究方向……………………………………………………………………………...1
1-3.研究目的及重點……………………………………………………………………...2
第二章文獻回顧及理論基礎…………………………………………….…………….3
2-1.生醫材料……………………………………………………………….……………...3
2-1-1.定義…………………………………………………………….………………3
2-1-2.生醫材料所需具備的條件及分類………………………………………………3
2-1-3.生醫陶瓷…………………………………………………………………………6
2-2.氧化鋁…………………………………………………………………………………9
2-3.磷酸鈣鹽類…………………………………………………………………………..11
2-3-1.氫氧基磷灰石…………………………………………………………………..11
2-3-2.三鈣磷酸鹽……………………………………………………………………..15
2-4.多孔植入材…………………………………………………………………………..16
第三章 材料與實驗方法………………………………………………………………..19
3-1. 粉末規格……………………………………………………………………………19
3-2. β-三鈣磷酸鹽的合成……………………………………………………………...19
3-2-1.配粉…………………………………………………………………………...19
3-2-2.合成…………………………………………………………………………...19
3-3. 合成β-TCP之性質………………………………………………………………...25
3-4.泥漿製備……………………………………………………………………………..25
3-4-1.粉末漿體濃度與黏度……………………………………………………….25
3-4-2.粒徑分析及生胚密度………………………………………………………...26
3-5.多孔三鈣磷酸之製作………………………………………………………………..26
3-6. Al2O3/β-TCP複合材料之製備……………………………………………………...29
3-6-1.灌漿…………………………………………………………………………...29
3-6-2.常壓燒結……………………………………………………………………...29
3-6-3.真空熱壓燒結………………………………………………………………...29
3-7.性質量測……………………………………………………………………………..32
3-7-1.熱差熱重分析(DTA/TGA)…………………………………………………..32
3-7-2.密度的測定…………………………………………………………………...32
3-7-3.彎曲強度的測定……………………………………………………………...34
3-7-4. X光繞射分析………………………………………………………………..34
3-7-5.孔徑分析……………………………………………………………………...35
第四章結果與討論…………………………………………………………………...36
4-1.三鈣磷酸粉末合成…………………………………………………………………..36
4-1-1.熱重分析…..………………………………………………………………….36
4-1-2.熱差分析……………………………………………………………………...36
4-1-3. X-ray繞射分析……………………………………………………..………..40
4-2.晶格常數……………………………………………………………………………..44
4-3.相變溫度……………………………………………………………………………..46
4-4.三鈣磷酸鹽泥漿之製備與特性……………………………………………………..51
4-4-1.粉末漿體濃度與黏度………………………………………………………...51
4-4-2.粒徑分佈……………………………………………………………………...54
4-4-3.粉末型態……………………………………………………………………...54
4-4-4.生胚密度……………………………………………………….……………..59
4-5.燒結密度……………………………………………………………………………..61
4-6.多孔預形體…………………………………………………………………………..64
4-7.β-TCP Al2O3複合材料之燒結……………………………………………………...64
4-7-1.常壓燒結…………………………………………………………………...…67
4-7-2.熱壓燒結……………………………………………………………………...67
第五章 結論……………………………………………………………………………72
參考文獻…………………………………………………………………………………74

參考文獻:
1.S.F. Hulbert, J.C. Bokros, L.L. Hench, J. Wilson, and G.Heimke,“Ceramics in clinical application- past, present and future,”in Clinical Application, P. Vincenzini, ed., Elsevier, Amsterdam, Netherlands, 1987, pp.3-27.
2.劉光興,“氧化鋁基材被覆鈣磷系骨材之研製。”成功大學碩士論文,83年六月。
3.陶瓷技術手冊,31章生醫陶瓷。
4.L.L. Hench,“Bioceramics: from Concept to Clinic”,Journal of the American Ceramic Society, Vol. 72, No. 4, pp. 93-98.
5.M. Sous, R. Bareille, F. Rouais, D. Clement, J. Amedde, B. Dupuy, Ch. Baquey, “Cellular biocompatibility and resistance to compression of macroporous β-tricalcium phosphate ceramics”,Biomaterials 19(1998)2147-2153.
6.R.Z. LeGeros, I.Orly, M. Gregoire, and G. Daculsi, “Substrate surface dissolution and interfacial bioligical mineralization,”in The Bone-Biomaterial interface, J.E. Davies ed., University of Toronto Press, Toronto, Canada, 1991,pp. 76-88.
7.G. Daculsi, “Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute”, Biomaterials 19(1998)1473-1478.
8.J.M. Lane, P.G. Bostrom, “Bone Grafting and New Composite Biosynthetic Graft Materials”,AAOS Instructional Course,Volume 47,1998.
9.C.P.A.T. Klein, J.M.A. de Blieck-Hogervorst, J.G.C. Wolke, and K. de Groot,“Studies of the solution of different calcium phosphate ceramic particles in vitro,”Biomaterials.,11(1990)509-512.
10.Saggio-Woyansky J, Scott CE. “Processing of porous ceramic.”J Amer Ceram Soc Bull 1983, pp.1674-1682.
11.Weber JN, White EW, Lebiedzik J. , “New porous biomaterials by
replication of echinoderm skeletal microstructure.”Nature 1971;
233:337-9.
12.Dean-Mo Liu. “Fabrication of hydroxyapatite ceramic as hard tissue prosthetics. ”J Mat Sci Mater Med 1997, pp. 227-32.
13.Arita IH, Wilkinson MA, Castano VM,“Chemistry and ssintering behaviour of thin hydroxyapatite ceramics with controlled porosity.”Biomaterials 16(1995)403-8.
14.Schliephake H, Neukam FW, Klosa D.“Influence of pore dimensions on bone ingrowth into porous hydroxyapatite blocks used as bone graft substitutes”, Int J Oral Maxillofac Surg 1991, pp.53-8.
15.成功大學材料系,“陶瓷及電子材料實驗”。
16.D.C. Tancred, B.A.O. McCormack, A.J. Carr, “A synthetic bone implant macroscopically identical to cancellous bone” Biomaterials, 19(1998)2303-2311.
17.Feng-Huei Lin, Chun-Jen Liao, Ko-Shao Chen, Jui-Sheng Sun, “Preparation of high-temperature stabilized β-tricalcium phosphate by heat deficient hydroxyapatite with Na4P2O7‧H2O addition”, Biomaterials , 19(1998)1101-1107.
18.Moriter A., Lemaitre J, Rodrique L., Rouxhet P.G., “Synthesis and thermal behavior of well-crystallized calcium-deficient phosphate apatite”, J Solid State Chem 1989, pp.215-219.
19.Yubao L., Klein C.P.A.T., de Wijn J., van De Meer S., “Morphology and composition of nanograde calcium phosphate need-like crystals formed by simple hydrothermal treatment”, J Mater Sci Mater Med 1994, pp.326-331.
20.Yubao L., Klein C.P.A.T., de Wijn J., van De Meer S.,“Shape change and phase transition of needle-like non-stoichiometric apatite crystals” , J Mater Sci Mater Med 1994, pp.263-268.
21.J. J. Prieto Valdes, J. Ortizlopez, G. Rueda Morales, “Fibrous growth of tricalcium phosphate ceramics” , J Mater Sci Mater Med 1997, pp.297-301.
22.Ando J.,“Tricalcium phosphate and its variation”,Bull Chem Soc Jpn 1958(31),pp. 196-201.
23.Dickens B., Schroeder L.W., Brown W.E., “Crystallographic studies of the role of Mg as a stabilizing impurity inβ-Ca3(PO4)2,Ⅰ.The crystal structure of pureβ-Ca3(PO4)2”, J Sol State Chem 1974, pp.232-248.
24.Schroeder L.W., Dickens D, Brown W.E., “Crystallographic studies of the role of Mg as a stabilizing impurity inβ-Ca3(PO4)2, Ⅱ.Refinement of Mg-containingβ-Ca3(PO4)2”, J Sol State Chem 1977, pp.253-262.
25.Feng-Huei Lin, Chun-Jen Liao, Ko-Shao Chen, Jui-Sheng Sun, Haw-Chang Liu, “Degradation behaviour of a new bioceramic:CaP2O7 with Na P2O7‧H2O”, Biomaterials , 18(1997)915-921.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top