|
[1]K. C. Persaud and G. H. Dodd, “Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose,” Nature, vol. 299, pp. 352-354, 1982. [2]T. I. Nasution, I. Nainggolan, S. D. Hutagalung, K. R. Ahmad and Z. A. Ahmad, “The sensing mechanism and detection of low concentration acetone using chitosan-based sensors,” Sensors and Actuators B, vol. 177, pp. 522–528, 2013. [3]H. Yao, A. J. Shum, M. Cowan, I. Lahdesmaki and B. A. Parviz, “A contact lens with embedded sensor for monitoring tear glucose level,” Biosensors and Bioelectronics, vol. 26, pp. 3290–3296, 2011. [4]M. X. Chu, K. Miyajima, D. Takahashi, T. Arakawa, K. Sano, S. Sawada, H. Kudo, Y. Iwasaki, K. Akiyoshi, M. Mochiznki and K. Mitsubayashi, “Soft contact lens biosensor for in situ monitoring of tear glucose as non-invasive blood sugar assessment,” Talanta, vol. 83, pp. 960–965, 2011. [5]H. Huang, O. K. Tan, Y. C. Lee, T. D. Tran, M. S. Tse and X. Yao, “Semiconductor gas sensor based on tin oxide nanorods prepared by plasma-enhanced chemical vapor deposition with postplasma treatment,” Applied Physics Letters, vol. 87, pp. 163123-1–163123-3, 2005. [6]J. A. Park, J. Moon, S. J. Lee, S. C. Lim and T. Zyung, “Fabrication and characterization of ZnO nanofibers by electrospinning,” Current Applied Physics, vol. 9, pp. S210–S212, 2009. [7]J. Y. Leng, X. J. Xu, N. Lv, H. T. Fan and T. Zhang, “Synthesis and gas-sensing characteristics of WO3 nanofibers via electrospinning,” Journal of Colloid and Interface Science, vol. 356, pp. 54–57, 2011. [8]J. Zhang, S. W. Choi and S. S. Kim, “Micro- and nano-scale hollow TiO2 fibers by coaxial electrospinning: preparation and gas sensing,” Journal of Solid State Chemistry, vol. 184, pp. 3008–3013, 2011. [9]Y. Zhang, K. Yu, D. Jiang, Z. Zhu, H. Geng and L. Luo, “Zinc oxide nanorod and nanowire for humidity sensor,” Applied Surface Science, vol. 242, pp. 212–217, 2005. [10]Z. S. Hosseini, A. Irajizad and A. Mortezaali, “Room temperature H2S gas sensor based on rather aligned ZnO nanorods with flower-like structures,” Sensors and Actuators B, vol. 207, pp. 865–871, 2015. [11]H. Huang, Y. C. Lee, C. L. Chow, O. K. Tan, M. S. Tse, J. Cuo and T. White, “Plasma treatment of SnO2 nanocolumn arrays deposited by liquid injection plasma-enhanced chemical vapor deposition for gas sensors,” Sensors and Actuators B, vol. 138, pp. 201–206, 2009. [12]W. Yin, B. Wei and C. Hu, “In situ growth of SnO2 nanowires on the surface of Au-coated Sn grains using water-assisted chemical vapor deposition,” Chemical Physics Letters, vol. 471, pp. 11–16, 2009. [13]C. Wongchoosuk, A Wisitsoraat, D. Phokharatkul, M. Horprathum, A. Tuantranont and T. Kerdcharoen, “Cabon doped tungsten oxide nanorods NO2 sensor prepared by glancing angle RF sputtering,” Sensors and Actuators B, vol. 181, pp. 388–394, 2013. [14]D. Zappa, E. Comini, R. Zamani, J. Arbiol, J. R. Morante and G. Sberveglieri, “Copper oxide nanowires prepared by thermal oxidation for chemical sensing,” Procedia Engineering, vol. 25, pp. 753–756, 2011. [15]R. Mohammadpour, H. Ahmadvand and A. Irajizad, “A novel field ionization gas sensor based on self-organized CuO nanowire arrays,” Sensors and Actuators A, vol. 216, pp. 202–206, 2014. [16]H. T. Fan, X. J. Xu, X. K. Ma and T. Zhang, “Preparation of LaFeO3 nanofibers by electrospinning for gas sensors with fast response and recovery,” Nanotechnology, vol. 22, pp. 115502-1–115502-7, 2011. [17]H. Du, J. Wang, M. Su, P. Yao, Y. Zheng and N. Yu, “Formaldehyde gas sensor based on SnO2/In2O3 hetero-nanofibers by a modified double jets electrospinning process,” Sensors and Actuators B, vol. 166-167, pp. 746–752, 2012. [18]L. Cheng, S. Y. Ma, T. T. Wang, X. B. Li, J. Luo, W. Q. Li, Y. Z. Mao and D. J. GZ, “Synthesis and characterization of SnO2 hollow nanofibers by electrospinning for ethanol sensing properties,” Materials Letters, vol. 131, pp. 23-26, 2014. [19]Y. L. Wang, S. Tan, J. Wang, Z.J. Tan, Q. X. Wu, Z. Jiao and M. H. Wu, “The gas sensing properties of TiO2 nanotubes synthesized by hydrothermal method,” Chinese Chemical Letters, vol. 22, pp. 603–606, 2011. [20]Z. Lin, W. Song and H. Yang, “Highly sensitive gas sensor based on coral-like SnO2 prepared with hydrothermal treatment,” Sensors and Actuators B, vol. 173, pp. 22–27, 2012. [21]Q. Zhou, W. Chen, L. Xu and S. Peng, “Hydrothermal synthesis of various hierarchical ZnO nanostructures and their methane sensing properties,” Sensors, vol. 13, pp. 6171–6182, 2013. [22]J.W. Gardner, V.K. Varadan and O.O. Awadelkarim, Microsensors MEMS and Smart Devices, England, John Wiley & Sons, 2001. [23]J. K. Srivastava, P. Pandey, V. N. Mishra and R. Dwivedi, “Structural and micro structural studies of PbO-doped SnO2 sensor for detection of methanol, propanol and acetone,” Journal of Natural Gas Chemistry, vol. 20, pp. 179–183, 2011. [24]K. Inyawilert, A. Wisitsora-at, A. Tuantranont, P. Singjai, S. Phanichphant and C. Liewhiran, “Ultra-rapid VOCs sensors based on sparked-ln2O3 sensing films,” Sensors and Actuators B, vol. 192, pp. 745–754, 2014. [25]C. Wongchoosuk, A. Wisitsoraat, A. Tuantranont and T. Kerdcharoen, “Portable electronic nose based on carbon nanotube-SnO2 gas sensor and its application for detection of methanol contamination in whiskeys,” Sensors and Actuators B, vol. 147, pp. 392–399, 2010. [26]W. Zeng and T. M. Liu, “Gas-sensing properties of SnO2-TiO2-based sensor for volatile organic compound gas and its sensing mechanism,” Physica B, vol. 405, pp. 1345–1348, 2010. [27]S. Park, S. An, H. Ko, C. Jin and C. Lee, “Enhancement of ethanol sensing of TeO2 nanorods by Ag functionalization,” Current Applied Physics, vol. 13, pp. 576–580, 2013. [28]H. Nguyen, C. T. Quy, N. D. Hoa, N. T. Lam, N. V. Duy, V. V. Quang and N. V. Hieu, “Controllable growth of ZnO nanowires grown on discrete islands of Au catalyst for realization of planar-type micro gas sensors,” Sensors and Actuators B, vol. 193, pp. 888–894, 2014. [29]S. J. Chang, W. Y. Weng, C. L. Hsu and T. J. Hsueh, “High sensitivity of a ZnO nanowire-based ammonia gas sensor with Pt nano-particles,” Nano Communication Networks, vol. 1, pp. 283–288, 2010. [30]J. H. Yoon, H. J. Lee and J. S. Kim, “Ammonia gas-sensing characteristics of Pd doped-WO3 ,” Sensor Letters, vol. 9, pp. 46–50, 2011. [31]L. Gu, K. Zheng, Y. Zhou, J. Li, X. Mo, G. R. Patzke and G. Chen, “Humidity sensors based on ZnO/TiO2 core/shell nanorod arrays with enhanced sensitivity,” Sensors and Actuators B, vol. 159, pp. 1–7, 2011. [32]F. S. Tsai and S. J. Wang, “Enhanced sensing performance of relative humidity sensors using laterally grown ZnO nanosheets,” Sensors and Actuators B, vol. 193, pp. 280–287, 2014. [33]S.M. Kang and Y. Leblebici, Digital Integrated Circuits, New York, McGraw-Hill, 1996. [34]S. Wu, Q. Lin, Y. Yuen, Y. C. Tai, “MEMS flow sensors for nano-fluidic applications,” Sensors and Actuators B, vol. 89, pp. 152–158, 2001. [35]H. M. Chuang and K. B. Thei, “Temperature-dependent characteristics of polysilicon and diffused resistors,” IEEE Transactions on Electron Devices, vol. 50, pp. 1413–1415, 2003. [36]P. Sun, W. Wang, Y. Liu, Y. Sun, J. Ma and G. Lu, “Hydrothermal synthesis of 3D urchin-like α-Fe2O3 nanostructure for gas sensor,” Sensors and Actuators B, vol. 173, pp. 52-57, 2012. [37]M. Z. Ahmad, A. Z. Sadek, K. Latham, J. Kita, R. Moos and W. Wlodarski “Chemically synthesized one-dimensional zinc oxide nanorods for ethanol sensing,” Sensors and Actuators B, vol. 187, pp. 295–300, 2013. [38]A. Forleo, L. Francioso, S. Capone, P. Siciliano, P. Lommens and Z. Hens, “Synthesis and gas sensing properties of ZnO quantum dots,” Sensors and Actuators B, vol. 146, pp. 111–115, 2010. [39]I. Simon, N. Barsan, M. Bauer and U. Weimar, “Micromachined metal oxide gas sensor: opportunities to improve sensor performance,” Sensors and Actuators B, vol. 73 pp. 1-26, 2001. [40]J. Ding, T. J. McAvoy, R. E. Cavicchi and S. Semancik, “Surface state trapping models for SnO2-based microhotplate sensors,” Sensors and Actuators B, vol. 77, pp. 597–613, 2001. [41]X. Liu, J. Zhang, S. Wu, D. Yang, P. Liu, H. Zhang, S. Wang, X. Yao, G. Zhu and H. Zhao, “Single crystal α-Fe2O3 with exposed {104} facets for high performance gas sensor applications,” RSC Advances, vol. 2, pp. 6178–6184, 2012. [42]Y. Cao, H. Luo and D. Jia, “Low-heating solid-state synthesis and excellent gas-sensing properties of α-Fe2O3 nanoparticles,” Sensors and Actuators B, vol. 176, pp. 618–624, 2013. [43]C. Yang, X. Su, F. Xiao, J. Jian and J. Wang, “Gas sensing properties of CuO nanorods synthesized by a microwave-assisted hydrothermal method,” Sensors and Actuators B, vol. 158, pp. 299–303, 2011. [44]C. Yang, X. Su, J. Wang, X. Cao, S. Wang and L. Zhang, “Facile microwave-assisted hydrothermal synthesis of varied-shaped CuO nanoparticles and their gas sensing properties,” Sensors and Actuators B, vol. 185, pp. 159–165, 2013. [45]D. S. Lee, Y. T. Kim, J. S. Huh and D. D. Lee, “Fabrication and characteristics of SnO2 gas sensor array for volatile organic compounds recognition,” Thin Solid Films, vol. 416, pp. 271–278, 2002. [46]X. L. Liu, I. Pappas, M. Fitzgerald, Y. J. Zhu, M. Eibling and L. Pan, “Solvothermal synthesis and characterization of ZrO2 nanostructures using zirconium precursor,” Materials Letttters, vol. 64, pp. 1591–1594, 2010. [47]G.M. Lin, C.L. Dai and M.Z. Yang, “A zirconium dioxide ammonia microsensor integrated with a readout circuit manufactured using the 0.18 μm CMOS Process,” Sensors, vol. 13, pp. 3664-3674, 2013. [48]S. B. Deshmukh, R. H. Bari, G. E. Patil, D. D. Kajale, G. H. Jain and L. A. Patil, “Preparation and characterization of zirconia based thick film resistor as a ammonia gas sensor,” International Journal on Smart Sensing and Intelligent Systems, vol. 5, pp. 540–558, 2012. [49]H. Yang, J. S. Lee, S. Bae and J. H. Hwang, “Density-controlled growth of ZnO nanorods using ZnO nanocrystals-embedded polymer composite,” Current Applied Physics, vol. 9, pp. 797–801, 2009. [50]L. Chen, Z. Liu, S. Bai, K. Zhang, D. Li, A. Chen and C. C. Liu, “Synthesis of 1-dimensional ZnO and its sensing property for CO,” Sensors and Actuators B, vol. 143, pp. 620–628, 2009. [51]L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang and S. Wang, “ZnO nanorod gas sensor for ethanol detection,” Sensors and Actuators B, vol. 162, pp. 237–243, 2012. [52]C. L. Dai, “A maskless wet etching silicon dioxide post-CMOS process and its application,” Microelectron. Engineering, vol. 83, pp. 2543–2550, 2006.
|