跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/27 08:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊閔智
研究生(外文):Ming-Zhi Yang
論文名稱:整合電路的氣體微感測器陣列晶片
論文名稱(外文):Integrated Gas Microsensors Array with Circuits on a Chip
指導教授:戴慶良
指導教授(外文):Ching-Liang Dai
口試委員:施錫富曾柏昌盧銘詮韓斌施文彬楊龍杰胡毓忠
口試委員(外文):Hsi-Fu ShihPai-Chung TsengMing-Chyuan LuPin HanWen-Pin ShihLung-Jieh YangYuh-Chung Hu
口試日期:2015-06-10
學位類別:博士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:99
中文關鍵詞:CMOS氣體微感測器陣列揮發性有機氣體
外文關鍵詞:CMOSGas microsensors arrayVOC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:166
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用標準0.18 μm CMOS製程製作出整合型氣體微感測器陣列晶片。此晶片上整合了四個氣體感測器、四個輸出電路與溫度計。本研究的目的在於利用此整合型氣體微感測器晶片,檢測四種揮發性有機氣體 (VOC)、環境濕度與溫度。此整合型晶片經由標準CMOS製程製作完成後,需進行後製程處理,利用蝕刻液將梳指狀電極間的二氧化矽犧牲層蝕刻移除,使梳指狀電極裸露出來,並將感測薄膜披覆於經過濕蝕刻處理後的梳指狀電極上。此整合型氣體微感測器陣列晶片的感測薄膜為氧化鐵、氧化銅、氧化錫、氧化鋯與氧化鋅,分別對丙酮、甲醇、乙醇、氨氣與水汽具有良好的響應特性。感測薄膜的特性分析是利用場發射掃描式電子顯微鏡 (FE-SEM)對薄膜表面型態與晶粒尺寸作分析;定性化學成份分析則是利用能量散射光譜儀 (EDS)與X光繞射儀 (XRD)對薄膜進行材料成分分析。
實驗結果顯示,利用水熱合成法製備而成的感測薄膜,其表面型態呈現高接觸表面積與高孔隙度,此特性有助於增加氣體微感測器的響應特性。此氣體微感測器陣列晶片對四種揮發性有機氣體 (丙酮、甲醇、乙醇、氨氣)與水汽分別具有高響應特性與選擇性。揮發性有機氣體微感測器的響應特性隨著環境中的相對濕度增加而提升。氣體微感測器整合電路量測部分,透過晶片上之環狀震盪電路,成功的將感測薄膜吸附目標氣體後所造成的的電容變化,轉換成頻率輸出變化。此整合電路的氣體微感測器的響應特性約為0.4-1.1 MHz/ppm。本研究進一步將此整合型氣體微感測器陣列晶片於混合揮發性有機氣體氣體的環境中進行特性量測。量測結果顯示,各個揮發性有機氣體微感測器仍然可以在混合氣體的環境中鑑別專一的目標氣體,實現即時偵測多種氣體的目標。
This study illustrates an integrated gas microsensors array chip fabricated using the standard 0.18 μm CMOS (complementary metal oxide semiconductor) process. The chip includes four gas sensors, four readout circuits and thermometers. The objectives of this study are to utilize the integrated gas microsensors array chip to detect four kinds of volatile organic compound (VOC) gases, the relative humidity of the surroundings and the ambient temperature. After completion of the CMOS process, the chip requires a post-process to etch the sacrificial layer between the interdigitated electrodes and to coat the sensitive film on the electrodes. The sensitive films of integrated gas microsensors array chips are α-Fe2O3, CuO, SnO2, ZrO2 and ZnO, which have good responses for detecting acetone, methanol, ethanol, ammonia and humidity gases, respectively. The characterizations of the sensitive films are observed using a field-emission scanning electron microscope (FE-SEM) to investigate the surface morphology and grain size. Energy dispersive spectrometry (EDS) and x-ray diffraction (XRD) are employed to estimate the chemical component analysis.
The experimental results show that the sensitive films synthesized by the hydrothermal method can help the gas microsensors enhance the response due to a high surface-to-volume ratio and high pore density. The gas microsensors array chip has a high response and good selectively for detection of VOC gases. The response of VOC microsensors decreased as the relative humidity of the ambient increased. In the measurement of the gas microsensors integrated with the circuit, the ring oscillator circuit successfully converts the capacitance variation of the microsensors into the oscillation frequency output. The response of the gas microsensors integrated with the circuit is about 0.4-1.1 MHz/ppm. This study further measures the characteristics of the integrated gas microsensors array chip in an environment with multiple VOC gases (acetone, methanol, ethanol and ammonia). Measurement results demonstrate that these VOC microsensors can identify the target gases in multiple gas environments and realizes the objectives of real-time detection.
致謝 i
中文摘要 ii
Abstract iii
Table of Contents v
List of Tables vii
List of Figures viii
Chapter 1. Introdution 1
1.1 Background 1
1.2 Previous Work 3
1.3 Objective 6
Chapter 2. Structure of the gas microsensors array chip 8
2.1. Design of the gas microsensors 9
2.2. Design of the thermometer 13
2.3. Design of the readout circuit 15
Chapter 3. Synthesis of the sensitive filmls 29
3.1. Adsorption mechanism of the gas sensors 30
3.2. Preparation flow of the Sensitive films 33
3.2.1. Acetone sensitive material 33
3.2.2. Methanol sensitive material 36
3.2.3. Ethanol sensitive material 39
3.2.4. Ammonia sensitive material 42
3.2.5. Humidity sensitive material 45
Chapter 4. Fabrication of the gas microsensors array chip 48
4.1. Process flow of the gas microsensors array chip 49
4.2. Package of the gas microsensors array chip 52
Chapter 5. Measurement equipments set-up 54
5.1. Experimental equipments set-up 54
5.2. Measurement of the polysilicon heater 56
5.3. Measurement of the thermometer 58
Chapter 6. Experiments of the gas microsensors array 59
6.1. Testing acetone microsensor 59
6.2. Testing methanol microsensor 67
6.3. Testing ethanol microsensor 71
6.4. Testing ammonia microsensor 75
6.5. Testing humidity microsensor 79
6.6. Testing gas microsensors array 84
Chapter 7. Conclusions and future works 92
7.1. Conclusions 92
7.2. Future works 93
References 94
Resume 99
[1]K. C. Persaud and G. H. Dodd, “Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose,” Nature, vol. 299, pp. 352-354, 1982.
[2]T. I. Nasution, I. Nainggolan, S. D. Hutagalung, K. R. Ahmad and Z. A. Ahmad, “The sensing mechanism and detection of low concentration acetone using chitosan-based sensors,” Sensors and Actuators B, vol. 177, pp. 522–528, 2013.
[3]H. Yao, A. J. Shum, M. Cowan, I. Lahdesmaki and B. A. Parviz, “A contact lens with embedded sensor for monitoring tear glucose level,” Biosensors and Bioelectronics, vol. 26, pp. 3290–3296, 2011.
[4]M. X. Chu, K. Miyajima, D. Takahashi, T. Arakawa, K. Sano, S. Sawada, H. Kudo, Y. Iwasaki, K. Akiyoshi, M. Mochiznki and K. Mitsubayashi, “Soft contact lens biosensor for in situ monitoring of tear glucose as non-invasive blood sugar assessment,” Talanta, vol. 83, pp. 960–965, 2011.
[5]H. Huang, O. K. Tan, Y. C. Lee, T. D. Tran, M. S. Tse and X. Yao, “Semiconductor gas sensor based on tin oxide nanorods prepared by plasma-enhanced chemical vapor deposition with postplasma treatment,” Applied Physics Letters, vol. 87, pp. 163123-1–163123-3, 2005.
[6]J. A. Park, J. Moon, S. J. Lee, S. C. Lim and T. Zyung, “Fabrication and characterization of ZnO nanofibers by electrospinning,” Current Applied Physics, vol. 9, pp. S210–S212, 2009.
[7]J. Y. Leng, X. J. Xu, N. Lv, H. T. Fan and T. Zhang, “Synthesis and gas-sensing characteristics of WO3 nanofibers via electrospinning,” Journal of Colloid and Interface Science, vol. 356, pp. 54–57, 2011.
[8]J. Zhang, S. W. Choi and S. S. Kim, “Micro- and nano-scale hollow TiO2 fibers by coaxial electrospinning: preparation and gas sensing,” Journal of Solid State Chemistry, vol. 184, pp. 3008–3013, 2011.
[9]Y. Zhang, K. Yu, D. Jiang, Z. Zhu, H. Geng and L. Luo, “Zinc oxide nanorod and nanowire for humidity sensor,” Applied Surface Science, vol. 242, pp. 212–217, 2005.
[10]Z. S. Hosseini, A. Irajizad and A. Mortezaali, “Room temperature H2S gas sensor based on rather aligned ZnO nanorods with flower-like structures,” Sensors and Actuators B, vol. 207, pp. 865–871, 2015.
[11]H. Huang, Y. C. Lee, C. L. Chow, O. K. Tan, M. S. Tse, J. Cuo and T. White, “Plasma treatment of SnO2 nanocolumn arrays deposited by liquid injection plasma-enhanced chemical vapor deposition for gas sensors,” Sensors and Actuators B, vol. 138, pp. 201–206, 2009.
[12]W. Yin, B. Wei and C. Hu, “In situ growth of SnO2 nanowires on the surface of Au-coated Sn grains using water-assisted chemical vapor deposition,” Chemical Physics Letters, vol. 471, pp. 11–16, 2009.
[13]C. Wongchoosuk, A Wisitsoraat, D. Phokharatkul, M. Horprathum, A. Tuantranont and T. Kerdcharoen, “Cabon doped tungsten oxide nanorods NO2 sensor prepared by glancing angle RF sputtering,” Sensors and Actuators B, vol. 181, pp. 388–394, 2013.
[14]D. Zappa, E. Comini, R. Zamani, J. Arbiol, J. R. Morante and G. Sberveglieri, “Copper oxide nanowires prepared by thermal oxidation for chemical sensing,” Procedia Engineering, vol. 25, pp. 753–756, 2011.
[15]R. Mohammadpour, H. Ahmadvand and A. Irajizad, “A novel field ionization gas sensor based on self-organized CuO nanowire arrays,” Sensors and Actuators A, vol. 216, pp. 202–206, 2014.
[16]H. T. Fan, X. J. Xu, X. K. Ma and T. Zhang, “Preparation of LaFeO3 nanofibers by electrospinning for gas sensors with fast response and recovery,” Nanotechnology, vol. 22, pp. 115502-1–115502-7, 2011.
[17]H. Du, J. Wang, M. Su, P. Yao, Y. Zheng and N. Yu, “Formaldehyde gas sensor based on SnO2/In2O3 hetero-nanofibers by a modified double jets electrospinning process,” Sensors and Actuators B, vol. 166-167, pp. 746–752, 2012.
[18]L. Cheng, S. Y. Ma, T. T. Wang, X. B. Li, J. Luo, W. Q. Li, Y. Z. Mao and D. J. GZ, “Synthesis and characterization of SnO2 hollow nanofibers by electrospinning for ethanol sensing properties,” Materials Letters, vol. 131, pp. 23-26, 2014.
[19]Y. L. Wang, S. Tan, J. Wang, Z.J. Tan, Q. X. Wu, Z. Jiao and M. H. Wu, “The gas sensing properties of TiO2 nanotubes synthesized by hydrothermal method,” Chinese Chemical Letters, vol. 22, pp. 603–606, 2011.
[20]Z. Lin, W. Song and H. Yang, “Highly sensitive gas sensor based on coral-like SnO2 prepared with hydrothermal treatment,” Sensors and Actuators B, vol. 173, pp. 22–27, 2012.
[21]Q. Zhou, W. Chen, L. Xu and S. Peng, “Hydrothermal synthesis of various hierarchical ZnO nanostructures and their methane sensing properties,” Sensors, vol. 13, pp. 6171–6182, 2013.
[22]J.W. Gardner, V.K. Varadan and O.O. Awadelkarim, Microsensors MEMS and Smart Devices, England, John Wiley & Sons, 2001.
[23]J. K. Srivastava, P. Pandey, V. N. Mishra and R. Dwivedi, “Structural and micro structural studies of PbO-doped SnO2 sensor for detection of methanol, propanol and acetone,” Journal of Natural Gas Chemistry, vol. 20, pp. 179–183, 2011.
[24]K. Inyawilert, A. Wisitsora-at, A. Tuantranont, P. Singjai, S. Phanichphant and C. Liewhiran, “Ultra-rapid VOCs sensors based on sparked-ln2O3 sensing films,” Sensors and Actuators B, vol. 192, pp. 745–754, 2014.
[25]C. Wongchoosuk, A. Wisitsoraat, A. Tuantranont and T. Kerdcharoen, “Portable electronic nose based on carbon nanotube-SnO2 gas sensor and its application for detection of methanol contamination in whiskeys,” Sensors and Actuators B, vol. 147, pp. 392–399, 2010.
[26]W. Zeng and T. M. Liu, “Gas-sensing properties of SnO2-TiO2-based sensor for volatile organic compound gas and its sensing mechanism,” Physica B, vol. 405, pp. 1345–1348, 2010.
[27]S. Park, S. An, H. Ko, C. Jin and C. Lee, “Enhancement of ethanol sensing of TeO2 nanorods by Ag functionalization,” Current Applied Physics, vol. 13, pp. 576–580, 2013.
[28]H. Nguyen, C. T. Quy, N. D. Hoa, N. T. Lam, N. V. Duy, V. V. Quang and N. V. Hieu, “Controllable growth of ZnO nanowires grown on discrete islands of Au catalyst for realization of planar-type micro gas sensors,” Sensors and Actuators B, vol. 193, pp. 888–894, 2014.
[29]S. J. Chang, W. Y. Weng, C. L. Hsu and T. J. Hsueh, “High sensitivity of a ZnO nanowire-based ammonia gas sensor with Pt nano-particles,” Nano Communication Networks, vol. 1, pp. 283–288, 2010.
[30]J. H. Yoon, H. J. Lee and J. S. Kim, “Ammonia gas-sensing characteristics of Pd doped-WO3 ,” Sensor Letters, vol. 9, pp. 46–50, 2011.
[31]L. Gu, K. Zheng, Y. Zhou, J. Li, X. Mo, G. R. Patzke and G. Chen, “Humidity sensors based on ZnO/TiO2 core/shell nanorod arrays with enhanced sensitivity,” Sensors and Actuators B, vol. 159, pp. 1–7, 2011.
[32]F. S. Tsai and S. J. Wang, “Enhanced sensing performance of relative humidity sensors using laterally grown ZnO nanosheets,” Sensors and Actuators B, vol. 193, pp. 280–287, 2014.
[33]S.M. Kang and Y. Leblebici, Digital Integrated Circuits, New York, McGraw-Hill, 1996.
[34]S. Wu, Q. Lin, Y. Yuen, Y. C. Tai, “MEMS flow sensors for nano-fluidic applications,” Sensors and Actuators B, vol. 89, pp. 152–158, 2001.
[35]H. M. Chuang and K. B. Thei, “Temperature-dependent characteristics of polysilicon and diffused resistors,” IEEE Transactions on Electron Devices, vol. 50, pp. 1413–1415, 2003.
[36]P. Sun, W. Wang, Y. Liu, Y. Sun, J. Ma and G. Lu, “Hydrothermal synthesis of 3D urchin-like α-Fe2O3 nanostructure for gas sensor,” Sensors and Actuators B, vol. 173, pp. 52-57, 2012.
[37]M. Z. Ahmad, A. Z. Sadek, K. Latham, J. Kita, R. Moos and W. Wlodarski “Chemically synthesized one-dimensional zinc oxide nanorods for ethanol sensing,” Sensors and Actuators B, vol. 187, pp. 295–300, 2013.
[38]A. Forleo, L. Francioso, S. Capone, P. Siciliano, P. Lommens and Z. Hens, “Synthesis and gas sensing properties of ZnO quantum dots,” Sensors and Actuators B, vol. 146, pp. 111–115, 2010.
[39]I. Simon, N. Barsan, M. Bauer and U. Weimar, “Micromachined metal oxide gas sensor: opportunities to improve sensor performance,” Sensors and Actuators B, vol. 73 pp. 1-26, 2001.
[40]J. Ding, T. J. McAvoy, R. E. Cavicchi and S. Semancik, “Surface state trapping models for SnO2-based microhotplate sensors,” Sensors and Actuators B, vol. 77, pp. 597–613, 2001.
[41]X. Liu, J. Zhang, S. Wu, D. Yang, P. Liu, H. Zhang, S. Wang, X. Yao, G. Zhu and H. Zhao, “Single crystal α-Fe2O3 with exposed {104} facets for high performance gas sensor applications,” RSC Advances, vol. 2, pp. 6178–6184, 2012.
[42]Y. Cao, H. Luo and D. Jia, “Low-heating solid-state synthesis and excellent gas-sensing properties of α-Fe2O3 nanoparticles,” Sensors and Actuators B, vol. 176, pp. 618–624, 2013.
[43]C. Yang, X. Su, F. Xiao, J. Jian and J. Wang, “Gas sensing properties of CuO nanorods synthesized by a microwave-assisted hydrothermal method,” Sensors and Actuators B, vol. 158, pp. 299–303, 2011.
[44]C. Yang, X. Su, J. Wang, X. Cao, S. Wang and L. Zhang, “Facile microwave-assisted hydrothermal synthesis of varied-shaped CuO nanoparticles and their gas sensing properties,” Sensors and Actuators B, vol. 185, pp. 159–165, 2013.
[45]D. S. Lee, Y. T. Kim, J. S. Huh and D. D. Lee, “Fabrication and characteristics of SnO2 gas sensor array for volatile organic compounds recognition,” Thin Solid Films, vol. 416, pp. 271–278, 2002.
[46]X. L. Liu, I. Pappas, M. Fitzgerald, Y. J. Zhu, M. Eibling and L. Pan, “Solvothermal synthesis and characterization of ZrO2 nanostructures using zirconium precursor,” Materials Letttters, vol. 64, pp. 1591–1594, 2010.
[47]G.M. Lin, C.L. Dai and M.Z. Yang, “A zirconium dioxide ammonia microsensor integrated with a readout circuit manufactured using the 0.18 μm CMOS Process,” Sensors, vol. 13, pp. 3664-3674, 2013.
[48]S. B. Deshmukh, R. H. Bari, G. E. Patil, D. D. Kajale, G. H. Jain and L. A. Patil, “Preparation and characterization of zirconia based thick film resistor as a ammonia gas sensor,” International Journal on Smart Sensing and Intelligent Systems, vol. 5, pp. 540–558, 2012.
[49]H. Yang, J. S. Lee, S. Bae and J. H. Hwang, “Density-controlled growth of ZnO nanorods using ZnO nanocrystals-embedded polymer composite,” Current Applied Physics, vol. 9, pp. 797–801, 2009.
[50]L. Chen, Z. Liu, S. Bai, K. Zhang, D. Li, A. Chen and C. C. Liu, “Synthesis of 1-dimensional ZnO and its sensing property for CO,” Sensors and Actuators B, vol. 143, pp. 620–628, 2009.
[51]L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang and S. Wang, “ZnO nanorod gas sensor for ethanol detection,” Sensors and Actuators B, vol. 162, pp. 237–243, 2012.
[52]C. L. Dai, “A maskless wet etching silicon dioxide post-CMOS process and its application,” Microelectron. Engineering, vol. 83, pp. 2543–2550, 2006.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top