跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.62) 您好!臺灣時間:2025/11/15 23:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇炯超
研究生(外文):Chiung-Chao Shu
論文名稱:模糊邏輯控制器應用於線性奇異系統之研究
論文名稱(外文):Study of Fuzzy Logic Controller Application in Linear Singular System
指導教授:孔蕃鉅李祖聖
指導教授(外文):Fan-Chu KungTzuu-Hseng S. Li
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:70
中文關鍵詞:Fuzzy Logic ControllerSingular SystemState Feedback
外文關鍵詞:模糊邏輯控制器奇異系統狀態回授
相關次數:
  • 被引用被引用:0
  • 點閱點閱:417
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
相較於一般系統,奇異系統之控制問題將更為複雜,因為涉及較多的運算矩陣( 與 )及奇異系統存在無限大極點。在這篇論文,我們分解奇異系統來解決這些困難,如此方便系統的分析與設計。首先,因為系統的等效轉換,我們可以保留:(1)系統的轉移矩陣 (2)系統的極點與零點以及 (3)系統的特徵多項式。所以我們使用奇異值分解的方法去分解奇異系統,奇異系統分解和轉換之後,我們可以得到簡單的奇異系統結構方塊圖。我們也提供兩種方法去獲得狀態回授增益,一種是直接的方法;另一種方法是時刻轉換的方法。比較這兩種方法得知,第二種方法比第一種方法容易獲得狀態回授增益。最後,針對具狀態回授之奇異系統,我們利用模糊控制器設計來完成奇異系統之輸出追蹤。

In comparing with general system, the control problems of singular systems are more complicated because more operating matrices (E and A) are involved and infinite poles exist in the singular system. In this thesis, we solve these difficulties by decomposing the singular system in simplified structure. This is easy and convenient for system analysis and design. Firstly, because of the equivalent transformation of the system, we can preserves (1) the transfer matrix of the system, (2) the set of system poles and zeros, and (3) characteristic polynomial of the system. So we use the singular value decomposition method to decompose the singular systems. After decomposing the singular system and using transformation, we can get the simplified singular system configuration. We also provide two methods to obtain the state feedback gain. One is the direct method; the other is time scale transformation method. Comparing these two methods it is found that, the second method is easier to give the state feedback gain than the first one. Finally, we use fuzzy logic controller design for singular system with state feedback to achieve output tracking of the system.

Contents
中文摘要I
AbstractII
AcknowledgmentIII
List of FigureVII
List of TablesVIII
Chapter 1. Introduction 1
1.1Introduction1
1.2Organization of thesis2
Chapter 2. Mathematical Descriptions of Singular Systems4
2.1Introduction4
2.2Basic properties of singular systems.4
2.3Equivalence of Singular systems7
2.3.1 Singular values decomposition form (SVD)7
2.3.2 Weierstrass form8
2.3.3 Standard form9
2.4 Impulse immunity10
2.5 Controllability, R-controllability, and impulse controllability14
2.6 Observability, R-observability, and impulse observability16
2.7 Stability17
2.8 Summary18
Chapter 3. Fuzzy Logic Controller19
3.1Introduction19
3.2Fuzzy logic controller20
3.2.1Fuzzy inference system (FI)21
3.2.2Decision-making logic (DML)23
3.2.3 Knowledge base (KB)25
3.2.4 Defuzzification interface system (DFI)26
3.3Summary…27
Chapter 4. Application of Fuzzy Logic Controller in Singular Systems with Output Feedback28
4.1Introduction28
4.2Computation of the transfer function matrix of singular systems29
4.2.1The direct method…29
4.2.2Generalized Leverrier method33
4.3Simulation and results36
4.4Summary40
Chapter 5. The Integration Strategy of FLC and State Feedback in Singular Systems41
5.1Introduction41
5.2Pole placement of the single input singular systems42
5.2.1 Direct method43
5.2.2 Time-scale transformation method45
5.3Infinite pole placement49
5.4Decomposition of singular systems51
5.5The integration of fuzzy logic controller (FLC) and state feedback
in singular system control58
5.5.1 The FLC in the singular system with state feedback for
output tracking59
5.5.2 The FLC in the perturbed singular system with state feedback
for output tracking60
5.5.3 The FLC for singular system with initial condition in state
variables62
5.6Summary64
Chapter 6. Conclusions65
References67
Biography

References
[1]Alion A., “An approach for pole assignment in singular systems”, IEEE Trans. on Auto. Control, Vol.34, pp.889-893, 1989.
[2]Andry A. N., Shapiro E. Y. and Chung J.C., “Eigenstructure assignment for linear system”, IEEE Trans. on Aerospace and Electronic System, Vol. 19, No 5, 1983.[3]Armenttano V. A., “Eigenvalue placement for generalized linear systems”, System Control Letter, Vol.4, pp.199-202, 1984.[4]Campbell Y. L., “ singular systems of Differential Equations,” Pitman, London, 1982.[5]Cobb D., “Feedback and pole placement in descriptor variable systems”, Int. J. Control 33, pp. 1135-1146,1981.[6]Cobb D., “Controllability, observability, and duality in singular systems”, IEEE Trans. on Auto. Control, Vol. 29, pp.1126-1146, 1984.[7]Dai L., “ The difference between regularity and irregularity in singular systems”, Circuits Systems Signal Process, Vol. 8, No. 4, 1989.[8]Dai L., “Impulsive modes and causality in singular systems”, Int. J. Control, Vol. 50, No. 4, pp.1267-1281, 1989.[9]Dai L., “Singular control systems”, Lecture Notes in Control and Information Sciences, Vol. 118, Springer-Verlag, New York, 1989.[10]Duan G. R. and Ron J. P.,” Eigenstructure assignment in descriptor systems via proportional plus derivative state feedback”, Int. J. Control, Vol. 67, No. 5, pp. 1147-1162, 1997.[11]Duan G. R., “Eigenstructure assignment and the response analysis in descriptor linear systems with state feedback control”, Int. J. Control, Vol. 68, No. 5, pp.663-694 ,1998.[12]Fahmy F. M. and Reilly J. O., “Matrix pencil of the closed loop descriptor systems: infinite-eigenvalue assignment”, Int. J. Control, Vol. 49, pp.1421-1431, 1989.[13]Franklin G. F., Powell J. D. and Emami-Naeini A., “Feedback Control of Dynamic Systems”, Addison-Wesley, Reading , MA, 1981.[14]Hsu L. C. and Chang F. R., ”New techniques for the pole placement of singular system”, IEEE Trans. on Circuits and Systems, Vol.2, pp.897-900, 1997[15]Hsu L. C., Peng H. M. and Chang F. R., “Computation of transfer function matrices of generalized state-space systems”, Journal of the Chinese Institute of Engineers, Vol. 20, No 4, 1997.[16]Hsu L. C., “Feedback control design of singular systems via time-scale transformation”, Ph.D. thesis, Taiwan University, 1999.[17]Ichihashi H. and Watanabe T., “Learning control by fuzzy models using a simplified fuzzy reasoning,” J. of Japan Society for Fuzzy Theory and Systems, pp. 429-437, 1990.[18]Kaczorek T., “An extension of the Cayley-Hamilton theorem for a standard pair of block matrices”, Proc. IEEE on Conf. Decision control, pp.4535-4536, 1995.[19]Kaczorek T., “State-feedback controllers for linear descriptor systems with singular matrix pencils”, Proc. IEEE on Conf. Decision Control, pp.2352-2353, 1995.[20]Larsen P. M., “Industrial applications of fuzzy logic control,” Int. J. Man, Mach, Studies, Vol. 12, No. 1, pp. 3-10, 1980.[21]Lewis F. L., ” Further remarks on the Cayley-Hamilton theorem and Leverrier’s method for the matrix pencil, [sE-A], IEEE Trans. on Auto. Control, Vol.31, pp.869-870, 1986.[22]Lewis F. L., “A survey of linear Singular Systems”, J. Circuit, Systems and Signal Processing, Vol.5, pp.3-36, 1986.[23]Liu W. Q., Wei Y. Y., and Teo K. L., “A frequency domain approach to control of singular systems”, IEEE Trans. on Auto. Control, Vol.44, pp.885-889, 1997.[24]Luenberger D. G., “Dynamic equations in descriptor form”, IEEE Trans. on Auto. Control, Vol. 22, pp.312-321, 1977[25]Mamdani E. H., “Application of fuzzy logic to approximate reasoning using linguistic synthesis,” IEEE Trans. on Computers, Vol.26, 1977.
[26]Mertzios B.G. and Syrmos B.L., “Transfer Function matrix for singular systems”, IEEE Trans. on Auto. Control, Vol.32, pp.829-831, 1987.
[27]Mertzios B.G., “Leverrier’s algorithm for singular systems”, IEEE Trans. on Auto. Control, Vol.29, pp.652-653, 1984.
[28]Mertzios B.G., Christodoulou M.A., Syrmos B.L., and Lewis F.L., ” Direct controllabil- ity and observability time domain conditions of singular systems”, IEEE Trans. on Auto. Control, Vol.33, pp.788-791, 1988.[29]Mukundan R. and Dayawansa W., “Feedback control of singular systems-proportional and derivative feedback control of the state”, Int. J. Syst. Sci., Vol. 14, pp. 615-632, 1983.[30]Nikoukhah R., Willsky A. S.and Levy B. C., “Boundary-value descriptor systems: well-poseness, reachability and observability”, Int. J. Control, Vol. 6, pp.1715-1737, 1987.[31]Ogata K., “Modern Control Engineering”, second Edition, New Jersey, 1990.[32]Ozcaldiran K. and Lewis F. L., “A geometric approach to Eigenstructure assignment for singular system”, IEEE Trans. on Auto. Control, Vol. 32, No.1, pp. 629-632. 1987[33]Ozcaldiran K., ”Fundamental theorem of linear state feedback for singular systems”, Proc. 29th Conf. Decision Control, Vol. 1, pp.67-72, 1990.[34]Rosenbrock H. H., “Structural properties of linear dynamical systems”, Int. J. Control, Vol. 20, pp.191-202, 1974.[35]Shayman M. A. and Zhou Z., “Feedback control and classification of generalized singular systems”, IEEE Trans. on Auto. Control, Vol.32, pp.483-494, 1987.[36]Sobel K. M., Shapiro E. Y. and Andry A. N., “Eigenstructure assignment”, Int. J. Control, Vol. 59, No. 1, 1944, pp. 13-37.[37]Stott B. “Power system response dynamic calculations”, Proc. IEEE, Vol. 67, pp.219-141, 1979.[38]Tsai J. S. H., Fan C.P. and Shieh L. S., “ Implementation of state feedback control law for singular systems via an input-output feedback structure”, Int. J. Sys. Sci. Vol. 26, No. 11, pp.2139-2158, 1995.[39]Takagi T., and Sugeno M., “Fuzzy identification of systems and its applications to modeling and control,” IEEE Trans. Syst. Man. Cybern. Vol. SMC-15, No. 1, pp. 116-132, 1985.[40]Tsukamoto Y., “An approach to fuzzy reasoning method,” Fuzzy Set Theory and Applications. North-Holland, Amsterdam 1979.[41]Tornambe A., “A simple procedure for the stabilization of a class of uncontrollable generalized systems”, IEEE Trans. on Auto. Control Vol. 41, pp.603-607, 1996.[42]Verghese G. C., Levy B. C., and Kailath T., “A generalized state-space for singular systems”, IEEE Trans. on Auto. Control, Vol. 26, pp.811-831, 1981.[43]Wang J. D. and Juang Y. T., “A new approach for computing the state feedback gains of multivariable systems”, IEEE Trans. on Auto. Control, Vol.40, pp.1823-1826, 1995.
[44]Yip E. L. and Sinvoec R. F., “Solvability, controllability and observability of continuous descriptor systems”, IEEE Trans. on Auto. Control, Vol.26, No. 3, pp.702-707, 1981.
[45]Zadeh L. A., “The concept of a linguistic variable and its application to approximate reasoning,” Memorandum ERL-M 411 Berkely, October 1973.
[46]Zadeh, L. A., “Fuzzy sets,” Inf. Control., Vol. 8, pp. 338—35, 1965.[47]Zhou Z., Shayman M. A. and Tran T. Z., “Singular systems: A new approach in the time domain”, IEEE Trans. on Auto. Control, Vol.32, pp.42-50, 1987.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top