跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/16 05:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:凃政暉
研究生(外文):Tu, Cheng-Hui
論文名稱:微晶矽薄膜電晶體及記憶體元件
論文名稱(外文):Micro-crystalline silicon thin film transistors and memory devices
指導教授:謝嘉民
指導教授(外文):Shieh, Jia-Min
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:55
中文關鍵詞:電晶體記憶體微晶矽
外文關鍵詞:Thin film transistorMemoryMicro-crystalline Silicon
相關次數:
  • 被引用被引用:4
  • 點閱點閱:244
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用感應耦合型電漿化學氣相沉積系統在265oC下製備高結晶性及低電阻率之微晶矽薄膜。藉由X光粉末繞射儀及電子束穿透顯微鏡分析驗證微晶矽薄膜具有高結晶性和極薄的非晶矽孵化層。此外,透過系統性的介電質參數最佳化,如氬流量、射頻功率、腔體壓力及甲烷/一氧化二氮的比例等,開發出高品質的介電層薄膜。利用高/低頻電容量測法萃取介面缺陷能態密度、漏電流及蝕刻率評估等方式驗證超薄(<5奈米)、低漏電流(10-8安培/平方公分於10伏特操作電壓下)且緻密的介電層。因此,利用此高品質的介電層,我們利用電將技術開發出超低漏電流低缺陷介電層並整合到不同厚度之薄膜電晶體,成功地將起始電壓降低了約1伏特。此電漿技術將可以達到製造3D堆疊元件的願景。整合此高結晶性及低缺陷之主動層及介電層的堆疊式上閘極和下閘極之微晶矽薄膜電晶體,其載子遷移率分別達到466和123平方公分/伏特-秒、次臨界擺幅為0.1~0.2 V/decade,開/關比為106已達世界級水準。非揮發性記憶體,例如:快閃式記憶體、EEPROMs不論在高密度記憶體、邏輯電路或是在微電路的應用,Si基板上已經是將當成熟,但在玻璃上因Tg溫度限制仍然相當困難因。我們應用此介電層及主動層技術於金屬-氧化物-氮化物-氧化物-多晶矽型非揮發性記憶體,成功壓低抹除和寫入電壓,並可在10-6脈衝寬度及有效打開記憶體特性,達到省電節省成本的目的產業上在可攜式平板電子產品可提高電池壽命。
In this thesis, high crystallinity and low resistivity of intrinsic and n-type microcrystalline silicon (μc-Si:H) thin films were deposited at 265oC by inductively coupled plasma chemical vapor deposition system (ICPCVD). The high crystallinity of μc-Si:H and thin incubation layer of amorphous silicon (a-Si) were examined by the analysis of X-Ray diffraction (XRD) and transmission electron microscope (TEM), respectively. In addition, after systematically optimizing the parameters of dielectric, such as Ar flow, RF power, chamber pressure and the ratio of SiH4/N2O, the high quality dielectric was developed. The dielectric with ultra-thin thickness (5nm), low leakage current dielectric (10-8A/cm2 within 10 V operation) and compact film were examined by interface trap state density by high/low frequency method, analysis of leakage current and etching rate evaluation. Therefore, we use plasma to developed low leakage current and defect and successfully construct a series of top-gate thin film transistors (TFTs) with different thickness. This plasma technology will be able to achieve the vision of the 3D stacking device. This dielectric with low interface trap states enables the reduction of threshold voltage of 1 V. By integration of active layer with high crystallinity and dielectric with high quality, the staggered top- and bottom- gate TFTs achieved mobility of 466 cm2/V-s and 123 cm2/V-s, sub-threshold swing of 0.1~0.2 V/decade and on/off ratio of 106. Nonvolatile memories such as flash memories and electrically erasable programmable read-only memories (EEPROMs) on silicon wafers have been extensively utilized in high-density memories, programmable logic, and microcontrollers. However, fabricating nonvolatile memory devices with favorable electrical characteristics on glass substrates is difficult because of the limit on the glass transition temperature (Tg) of glass substrates. Finally, we implement this dielectric and active layer technology in metal-oxide-nitride-oxide-semiconductor (MONOS) type nonvolatile memory (NVM), successfully reduce the program/erase voltage, and constructi low temperature SONOS-memory operated with low and fast programmable pulses. Since SOP technology is primarily used for portable electronics, low power consumption is a basic requirement to ensure a long battery life. This breakthrough not only reduces the cost of device fabrication but also is very promising for industrial application.
第一章 導 論 1
1.1前言 1
1.2非晶矽 2
1.3微晶矽 3
1.2.1 表面擴散機制 4
1.2.2 蝕刻機制 4
1.2.3 化學退火機制 4
1.4微晶矽薄膜電晶體及記憶體 7
第二章 實驗儀器 8
2.1感應耦合型電漿化學氣相沉積系統 8
2.1.1 離子化(Ionzation) 9
2.1.2 激發—鬆弛(Excitation-Relaxation) 9
2.1.3 分解(Dissociation) 10
2.2電子束金屬蒸鍍沉積系統 12
2.3量測系統 13
第三章 元件結構與製作 14
3.1電容製作 14
3.2微晶矽薄膜電晶體 16
3.1.1上閘極堆疊型微晶矽薄膜電晶體製程: 18
3.1.2下閘極堆疊型微晶矽薄膜電晶體製程: 21
3.3非揮發性微晶矽薄膜記憶體 23
第四章 實驗結果分析 26
4.1電容C-V量測 26
4.1.1 電容原理 26
4.1.2 介電層最佳化 29
4.1.3 感應耦合型電漿化學氣相沉積系統沉積低溫介電層 32
4.2薄膜特性分析 36
4.2.1 X-射線繞射光譜儀(XRD) 36
4.2.2掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 37
4.3上閘極矽薄膜電晶體I-V電性圖 37
4.4通道電阻,寄生電阻及ON 電阻 41
4.5熱載子效應 42
4.6能態密度(Density of state, DOS) 43
4.7下閘級薄膜電晶體(Bottom gate) 46
4.8快閃式記憶體MONOS 48
4.8.1 快閃式記憶體操作原理 48
4.8.2 介電層優化 50
4.8.3 記憶體電性 51
第五章 結論 53
5.1 結論 53
5.2 未來方向 53
Reference 54
[1] H. S. a. R. Swann, "Chemical vapour deposition promoted by rf discharge," Solid-State Electronics, vol. 8, pp. 653-654, 1965.
[2] R. Chittick, "The preparation and properties of amorphous silicon," Journal of the Electrochemical Society, vol. 116, p. 77, 1969.
[3] K.-Y. Chan, "High-mobility microcrystalline silicon thin-film transistors prepared near the transition to amorphous growth " Journal of Applied Physics, vol. 104, pp. 054506 - 054506-6, 2008.
[4] A. Matsuda, "Formation kinetics and control of microcrystallite in μc-Si:H from glow discharge plasma," Journal of Non-Crystalline Solids, vol. 59-60, pp. 767–774, 1983.
[5] C. C. Tsai, Amorphous Silicon and Related Materials. Singapore: World Scientific, 1988.
[6] A. Matsuda, "Growth mechanism of microcrystalline silicon obtained from reactive plasmas," Thin Solid Films, vol. 337, pp. 1-6, 1999.
[7] 蕭宏, 半導體製程技術導論: 學銘圖書有限公司, 2007.
[8] P. K. Weimer, "The TFT A New Thin-Film Transistor," Proceedings of the IRE, vol. 50, pp. 1462 - 1469 June 1962.
[9] P. G. S. le Comber, W.E. ; Ghaith, A. , "Amorphous-silicon field-effect device and possible application " Electronics Letters, vol. 15, pp. 179-181, March 15 1979.
[10] R. B. M. a. S. Wagner, "Nanocrystalline silicon thin-film transistors with 50-nm-thick deposited channel layer, 10 cm2V-1s-1 electron mobility and 108 on/off current ratio," Applied Physics A: Materials Science & Processing, vol. 74, pp. 541-543, 2002.
[11] K.-i. T. Thomas W. Little, Hideki Koike, Takashi Nakazawa, Ichio Yudasaka and Hiroyuki Ohshima "Low Temperature Poly-Si TFTs Using Solid Phase Crystallization of Very Thin Films and an Electron Cyclotron Resonance Chemical Vapor Deposition Gate Insulator," Jpn. J. Appl. Phys, vol. 30, pp. 3724-3728 1991.
[12] H. G. S. Wagner, I-C. Cheng, and M. Wu, vol. 430: Thin Solid Films, 2003.
[13] J. Y. O. J. Jang, S. K. Kim, Y. J. Choi, S. Y. Yoon, and C. O. Kim, Natures Londond, vol. 395, p. 481, 1998.
[14] R. B. P. Roca i Cabarrocas, P. Bulkin, R. Vanderhaghen, B.Dr?臀illon, and I. French, Appl. Phys., vol. 86, p. 7079, 1999.
[15] K. F. T. Nagahara, N. Kohno, Y. Kashiwagi, and H. Kakinoki, pn. J. Appl Phys., vol. 31, p. 4555, 1992.
[16] I.-C. C. a. S. Wagner, Appl. Phys. Lett, vol. 80, p. 440, 2002.
[17] C.-H. K. Jia-Lin Wu, Chih-Yuan Lee,Je-Chuang Wang,Chien-Wei Liao, "The Study of Characteristics on SONOS Flash Memory with Nitridation Tunnel Oxide," JOURNAL OF C.C.I.T., vol. 39, 2010.
[18] V.-D. N. Vinh-Ai Dao, Jongkyu Heo, Hyungwook Choi, Youngkuk Kim, Nariangadu Lakshminarayan, Junsin Yi, "Effect of N2O/SiH4 flow ratios on properties of amorphous silicon oxide thin films deposited by inductively-coupled plasma chemical vapor deposition with application to silicon surface passivation," Vacuum, vol. 84, pp. 410-414, 2009.
[19] C.-H. Lee, A. Sazonov, A. Nathan, and J. Robertson, "Directly deposited nanocrystalline silicon thin-film transistors with ultra high mobilities," Applied Physics Letters, vol. 89, p. 252101, 2006.
[20] M. I-Chun Cheng, IEEE, Sigurd Wagner, Fellow, IEEE, and Evelyne Vallat-Sauvain, "Contact Resistance in Nanocrystalline Silicon Thin-Film Transistors," IEEE, vol. 55, p. 4, 2008.
[21] M. J. Powell, C. van Berkel, I. D. French, and D. H. Nicholls, "Bias dependence of instability mechanisms in amorphous silicon thin-film transistors," Applied Physics Letters, vol. 51, p. 1242, 1987.
[22] N. W. Gregory Choong, Martin Python, Christophe Ballif, "High mobility bottom gate microcrystalline silicon TFT deposited by VHF PECVD," in The Proceedings of the 5th International TFT Conference.
[23] K. S. J.W. Lee *, J. Hanna, "Deposition of high crystallinity poly-Si films on glass substrate and fabrication of high mobility bottom-gate TFT," Journal of Non-Crystalline Solids, vol. 338–340, pp. 173–177, 2004.
[24] J.-J. Huang, Y.-P. Chen, S.-Y. Lien, K.-W. Weng, and C.-H. Chao, "High mechanical and electrical reliability of bottom-gate microcrystalline silicon thin film transistors on polyimide substrate," Current Applied Physics, vol. 11, pp. S266-S270, 2011.
[25] M. Hara, "High mobility bottom gate nanocrystalline-Si thin-film transistors," Thin Solid Films, vol. 519, pp. 3922-3924, 2011.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊