跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/26 02:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曹秀鳳
研究生(外文):Hsiu-feng Tsao
論文名稱:Zr61Al7.5Cu17.5Ni10Si4非晶質合金之結晶動力學的研究
論文名稱(外文):Crystallization Kinetics of the Zr61Al7.5 Cu17.5Ni10Si4 Alloy Using Isothermal DSC and TEM Observation
指導教授:鄭憲清
指導教授(外文):Shian-Ching Jang
學位類別:碩士
校院名稱:義守大學
系所名稱:材料科學與工程學系碩士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:126
中文關鍵詞:結晶動力學熱穩定性非晶質合金
外文關鍵詞:Crystallization KineticsTEM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:600
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
Zr-Cu-Al-Ni基非晶質合金具有相當寬廣之過冷液相區(~100K)、高玻璃形成能力,同時也表現出非常優越之機械性質,所以該合金廣為世界各國之學者研究。其中在Jang等人的研究中發現,添加4at%Si之鋯基非晶質,可獲得非常好的熱穩定性,而熱穩定性之優劣又關係到該合金未來應用時之熱加工性質,其結晶活化能高達380kJ/more,故本實驗以Zr61Cu17.5Al7.5Ni10Si4合金作為研究主題,進而探討其結晶動力學,作為未來近一步精密成形之基礎。
由實驗之結果得知,在非恆溫分析法中Zr61Cu17.5Al7.5Ni10Si4與Zr65Cu17.5Al7.5Ni10之計算所得之n值皆隨溫度升高而降低,其值介於4~2之間,表示結晶初期是以三度空間成長,隨退火溫度與時間增加,故以二度或一度空間成長,且Zr61Cu17.5Al7.5Ni10Si4的晶核飽和點約為64%,而Zr65Al7.5Cu17.5Ni10約為47% ,此亦證明Zr61Cu17.5Al7.5Ni10Si4合金擁有較佳之熱穩定性。
經由XRD和TEM之微結構分析,經過恆溫退火過後之試片,在低溫或結晶初期之試片之結晶相為Zr2Cu ,隨結晶率增加Zr2Cu、Zr2Ni、ZrNi2Al和ZrCu的結晶也漸漸長出,而後在恆溫703K退火2500秒(結晶率約為70%)後有Zr3Al、Zr3Al2的結晶產生,在恆溫703K退火4小時即有Zr2Si。由line scan分析可發現Zr61Cu17.5Al7.5Ni10Si4合金中之Si原子會聚集在晶粒週遭,使晶粒成長較困難。藉由TEM之觀察及量測,將恆溫退火後之晶粒大小計算可發現,Zr2Cu晶粒大小在三次方時與退火時間呈線性關係,這即表示晶粒成長是成三次元方位,同時計算其結晶成長動力學發現其成長活化能,發現Zr2Cu晶粒在Zr61Cu17.5Al7.5Ni10Si4合金中之成長活化能約為155±20kJ/mole,較無添加Si之合金之活化能為100±10kJ/mole高出約50%左右。 
Recently, a number of amorphous alloy systems with a wide supercooled liquid region (ΔTx is above 50 K, ΔTx is defined as the difference between the glass transition temperature Tg and the onset crystallization temperature Tx) and high glass forming ability (have bulk dimensions in the range of 5 to 50 mm) have been discovered. These amorphous alloys promise to allow the production of large-scaled bulk glassy materials by casting at low cooling rates. In addition, availability of these bulk metallic glasses (BMGs) enables unique approaches to form complex-shaped precision components by viscous flow forming at the temperature within the supercooled liquid region. In order to control the precision forming process at the temperature of supercooled liquid region and avoid the occurrence of crystallization, it is important to investigate the kinetics of crystallization by isothermal annealing the amorphous alloy at the temperature within the supercooled liquid region. The Zr-Cu-Al-Ni metallic glass system is one of the most promising BMGs with exceptional wide super cooled liquid region exceeding 100K, high glass-formation ability, and superior engineering properties. In addition, Jang and some other scholars also reported that adding silicon into the Zr65Al7.5Cu17.5Ni10 base alloy can significant increase the thermal stability of the Zr65Al7.5Cu17.5Ni10 base alloy. The highest activation energy of crystallization, 370 kJ/mole, and relatively long incubation time during isothermal annealing at the supercooled temperature region were found to occur at the Zr61Al7.5Cu17.5Ni10Si4 alloy. Therefore, the Zr61Al7.5 Cu17.5Ni10Si4 alloy was selected for studying its crystallization kinetics under isothermal annealing.
According the result of non-isothermal DSC analysis, both of the Avrami n values of Zr61Cu17.5Al7.5Ni10Si4 and Zr65Cu17.5Al7.5Ni10 amorphous alloys exhibited decreasing trend with increasing temperature as well as increasing crystallization ratio. The n value varies from 4 to 2 with increasing temperature and crystallization ratio. In addition, the transition point of nucleation-crystal growth occurred at about 64% crystallization for Zr61Cu17.5Al7.5Ni10Si4 alloy and about 47% crystallization for the Zr65Al7.5Cu17.5Ni10 alloy. This demonstrates that the Zr61Cu17.5Al7.5Ni10Si4 amorphous alloy has better thermal stability than the base alloy.
After isothermal annealing Zr61Cu17.5Al7.5Ni10Si4 and Zr65Cu17.5Al7.5Ni10 amorphous alloys, the Zr2Cu crystal was observed at the early stage for both of alloys. Then the Zr2Ni crystal、the ZrNi2Al crystal and the ZrCu crystal were also observed term by term with increasing crystallization ratio. Moreover, the Zr3Al crystal and the Zr3Al2 crystal were found after isothermal annealed the Zr61Cu17.5Al7.5Ni10Si4 amorphous alloy at 703K for 2500 s (which corresponds to 70 % crystallization). Finally, the Zr2Si was crystallized after 4 hours isothermal annealing at 703 K. The result of line scan analysis revealed that Si atoms tend to segregate around the Zr2Cu crystal at the early stage of crystallization. This increases the difficulty of grain growth for Zr2Cu. Additionally, the result of TEM observation also revealed that the grain growth Zr2Cu crystal in these two amorphous alloys is controlled by a thermal activated process of Arrhenius type, which is described by Dt3 – D03 = k0 tg exp (-Q/R•Ta).This kinetics shows that the crystalline grain grows in three dimensions at the initial crystallization stage. The activation energy for the grain growth of Zr2Cu is 155 ± 20 kJ/mole in the Zr61Al7.5Cu17.5Ni10Si4 amorphous alloy, which is larger than that, 100 ± 10 kJ/mole, in Zr65Cu17.5Al7.5Ni10 amorphous alloy. This also indicates that the Zr61Cu17.5Al7.5Ni10Si4 amorphous alloy has higher thermal stability than the base alloy.
中文摘要Ⅰ
英文摘要Ⅲ
致謝Ⅴ
總目錄Ⅵ
表目錄Ⅸ
圖目錄Ⅹ
第一章 前言1
第二章 理論基礎3
2-1 非晶質合金發展歷程3
2-2 實驗歸納法則4
2-3 非晶質合金的製造方法5
2-4 非晶質合金之種類6
2-5 非晶質合金的特性7
2-5-1 機械性質7
2-5-2 磁性質8
2-5-3 耐蝕性8
2-5-4 其他性質9
2-6 相關理論9
2-6-1 熱力學9
2-6-1-1 非晶質之平衡10
2-6-1-2 玻璃轉換溫度Tg 11
2-6-1-3 玻璃形成能力之GFA指標13
2-6-2 動力學14
2-6-3 結晶觀點16
2-7 熱力學分析16
2-7-1 恆溫分析法17
2-7-2 非恆溫分析法19
2-7-2-1 ㄧ般非恆溫分析法19
2-7-2-2 修正之非恆溫分析法21
第三章 實驗步驟23
3-1 合金試片配製23
3-1-1 合金鑄錠熔23
3-1-2 薄帶製作24
3-2 熱性質分析24
3-2-1 示差掃描熱分析(DSC)25
3-2-1-1 等速率升溫25
3-2-1-2 恆溫加熱25
3-2-2 示差熱分析(DTA)25
3-3 微觀結構分析26
3-3-1 掃瞄式電子顯微鏡(SEM)26
3-3-2 X光繞射儀(XRD)26
3-3-3 穿透式電子顯微鏡(TEM)26
第四章 結果與討論28
4-1 熱性質分析28
4-1-1 非恆溫熱力學和動力學分析28
4-1-1-1 ㄧ般之非恆溫分析法-Kissinger plot 28
4-1-1-2 修正之非恆溫分析法29
4-1-2 恆溫熱力學和動力學分析30
4-2 微觀結構分析32
4-2-1 X光繞射分32
4-2-2 TEM觀察與動力學分析33
4-2-3 破損分析37
第五章 結論39
參考資料42
表目錄
表1-1 非晶質合金之特性48
表2-1 最初非晶質合金之系統分類49
表2-2 多元系塊狀非晶質合金種類與發展歷程50
表2-3 多元塊狀非晶質合金之成份分類51
表2-4 非晶質合金之磁特性52
表2-5 非晶質合金之決定因子53
表2-6 JMA方程式中之n值54
表4-1 各個升溫速率的Tg與Tx,及真實Tg與Tx (a) Zr61Cu17.5Al7.5Ni10Si4 (b)Zr65Cu17.5Al7.5Ni10 55
表4-2 Zr61Cu17.5Al7.5Ni10Si4 與Zr65Cu17.5Al7.5Ni10的ΔTx、Trg與γ值56
表4-3 Zr61Cu17.5Al7.5Ni10Si4合金各恆溫退火溫度與時間之晶粒大小與韌脆示意56
圖目錄
圖1-1 Zr55Cu30Al10Ni5之室溫機械行為 (a)完全非晶質 (b)部分結晶57
圖2-1 合金系統之分類圖58
圖2-2 結晶與非結晶之X光繞射結果58
圖2-3 施加外力於非晶質材料,原子對力之傳導方式59
圖2-4 玻璃形成時,焓與比容之關係圖59
圖2-5 Zr59Al7.5Ni10Cu17.5B6非晶質合金之DSC曲線60
圖2-6 非晶質比熱與溫度之關係圖60
圖2-7 臨界冷卻速率與玻璃形成能力關係圖61
圖2-8 非晶質合金之形成法則61
圖2-9 三種空間成長機制62
圖3-1 實驗流程圖63
圖3-2 ( a )氬焊機外觀圖 ( b )電弧熔解爐爐體(Arc-melt furnace)64
圖3-3 電弧熔解爐結構圖65
圖3-4 墜落式鑄造爐結構圖66
圖3-5 ( a )電晶體高周波感應熔解爐圖 ( b )單輥輪旋轉熔煉爐67
圖4-1 DSC升溫曲線圖(a) Zr61Cu17.5Al7.5Ni10Si4 (b) Zr65Cu17.5Al7.5Ni10 68
圖4-2 真實Tg和Tx (a) Zr61Cu17.5Al7.5Ni10Si4 (b) Zr65Cu17.5Al7.5Ni10 69
圖4-3 Kissinger polt (a) Zr61Cu17.5Al7.5Ni10Si4 (b) Zr65Cu17.5Al7.5Ni10 70
圖4-4 結晶度對溫度關係圖 (a) Zr61Cu17.5Al7.5Ni10Si4 (b) Zr65Cu17.5Al7.5Ni10 71
圖4-5 ln[-ln(1-x)]對lnψ關係圖 (a)Zr61Cu17.5Al7.5Ni10Si4 (b) Zr65Cu17.5Al7.5Ni10 72
圖4-6 ln[-ln(1-x)]對1000/T關係圖 (a) Zr61Cu17.5Al7.5Ni10Si4 (b) Zr65Cu17.5Al7.5Ni10 73
圖4-7 結晶度對恆溫時間關係圖 (a) Zr61Cu17.5Al7.5Ni10Si4 (b) Zr65Cu17.5Al7.5Ni10 74
圖4-8 孕核時間對恆溫加熱溫度關係圖75
圖4-9 不同溫度之恆溫退火DSC曲線 (a) Zr61Cu17.5Al7.5Ni10Si4 (b) Zr65Cu17.5Al7.5Ni10 76
圖4-10 Zr61Cu17.5Al7.5Ni10Si4在不同恆溫退火溫度下之Avrami plot(30%~80%)77
圖4-11 Zr61Cu17.5Al7.5Ni10Si4在不同恆溫退火溫度下之Avrami plot(0%~100%)77
圖4-12 lnt對1000/T關係圖 (a) Zr61Cu17.5Al7.5Ni10Si4 (b) Zr65Cu17.5Al7.5Ni10 78
圖4-13 Zr61Cu17.5Al7.5Ni10Si4合金薄帶於恆溫703K退火處理後之XRD圖(短時間)79
圖4-14 Zr61Cu17.5Al7.5Ni10Si4合金薄帶於恆溫703K退火處理後之XRD圖(長時間)80
圖4-15 Zr61Cu17.5Al7.5Ni10Si4合金薄帶於恆溫703K退火處理後之TEM圖 (a) tg=0秒 (b) tg=500秒 (c) tg=1000秒 (d) tg=1500秒82
圖4-16 Zr61Cu17.5Al7.5Ni10Si4合金薄帶於恆溫693K退火處理後之TEM圖 (a) tg=0秒 (b) tg=500秒 (c) tg=1000秒 (d) tg=1500秒84
圖4-17 Zr61Cu17.5Al7.5Ni10Si4合金薄帶於恆溫683K退火處理後之TEM圖 (a) tg=0秒 (b) tg=500 秒 (c) tg=1000秒 (d) tg=1500秒86
圖4-18 Zr61Cu17.5Al7.5Ni10Si4合金薄帶於恆溫673K退火處理後之TEM圖 (a) tg=0秒 (b) tg=500 秒 (c) tg=1000秒 (d) tg=1500秒88.
圖4-19 Zr61Cu17.5Al7.5Ni10Si4合金薄帶於恆溫703K退火處理後之TEM圖 (a) ta=2500秒 (b) ta=3500秒 (c)ta=4000秒 (d) ta=4小時90
圖4-20 Zr61Cu17.5Al7.5Ni10Si4合金薄帶於恆溫703K退火處理後之晶粒大小91
圖4-21 Zr61Cu17.5Al7.5Ni10Si4合金薄帶於恆溫703K退火2500後之TEM圖92
圖4-22 Zr61Cu17.5Al7.5Ni10Si4合金薄帶於恆溫703K退火2500秒處理後之 (a) HR影像 (b) Zr3Al[-111]Zone擇區繞射圖92
圖4-23 Zr61Cu17.5Al7.5Ni10Si4合金薄帶於恆溫703K退火2500秒處理後之 (a) HR影像 (b) Zr3Al[-111]Zone擇區繞射圖93
圖4-24 Zr61Cu17.5Al7.5Ni10Si4合金薄帶於恆溫703K退火2500秒處理後之 (a) HR影像 (b) Zr3Al[-110]Zone擇區繞射圖93
圖4-25 Zr61Cu17.5Al7.5Ni10Si4合金薄帶於恆溫703K退火2500秒處理後之 (a) HR影像 (b) 區域(b)- Zr3Al2[-110]Zone擇區繞射圖 (c) 區域(c)- Zr3Al[-111]Zone擇區繞射圖 (d) 區域(d)- Zr3Al2[-110]Zone擇區繞射圖94
圖4-26 Zr61Cu17.5Al7.5Ni10Si4合金薄帶於恆溫703K退火2500秒處理後之 (a) HR影像 (b) Zr2Cu[-110]Zone擇區繞射圖95
圖4-27 Zr61Cu17.5Al7.5Ni10Si4合金薄帶於恆溫703K退火3500秒處理後之 (a) HR影像 (b) 區域(b)-Zr3Al2[-110]Zone擇區繞射圖 (c) 區域(c)-Zr2Cu[1-10]Zone擇區繞射圖96
圖4-28 Zr61Cu17.5Al7.5Ni10Si4合金薄帶於恆溫703K退火4000秒處理後之 (a) HR影像 (b) Zr2Ni[-113]Zone擇區繞射圖97
圖4-29 Zr61Cu17.5Al7.5Ni10Si4合金薄帶於恆溫703K退火4000秒處理後之 (a) HR影像 (b) Zr3Al[0-11]Zone擇區繞射圖97
圖4-30 Zr61Cu17.5Al7.5Ni10Si4合金薄帶於恆溫703K退火4000秒處理後之 (a) HR影像 (b) Zr2Ni[0-11]Zone擇區繞射圖98
圖4-31 Zr61Cu17.5Al7.5Ni10Si4合金薄帶於恆溫703K退火4000秒處理後之 (a) HR影像 (b) Zr2Cu[001]Zone擇區繞射圖98
圖4-32 Zr61Cu17.5Al7.5Ni10Si4合金薄帶於恆溫703K退火4小時處理後之 (a) HR影像 (b) Zr3Al[-110]Zone擇區繞射圖99
圖4-33 Zr61Cu17.5Al7.5Ni10Si4合金薄帶於恆溫703K退火4小時處理後之 (a) HR影像 (b) Zr2Cu[001]Zone擇區繞射圖99
圖4-34 Zr65Cu17.5Al7.5Ni10合金薄帶於恆溫673K退火處理後之TEM圖 (a) tg=0秒 (b) tg=500 秒 (c) tg=1000秒 (d) tg=1500秒101
圖4-35 Zr65Cu17.5Al7.5Ni10合金薄帶於恆溫683K退火處理後之TEM圖 (a) tg=0秒 (b) tg=500 秒 (c) tg=1000秒 (d) tg=1500秒103
圖4-36 Zr65Cu17.5Al7.5Ni10合金薄帶於恆溫693K退火處理後之TEM圖 (a) tg=0秒 (b) tg=500 秒 (c) tg=1000秒 (d) tg=1500秒105
圖4-37 Zr65Cu17.5Al7.5Ni10合金薄帶於恆溫703K退火處理後之TEM圖 (a) tg=0秒 (b) tg=500 秒 (c) tg=1000秒 (d) tg=1500秒107
圖4-38 Zr65Cu17.5Al7.5Ni10合金於恆溫703K退火處理後之晶粒大小108
圖4-39 Zr61Cu17.5Al7.5Ni10Si4合金薄帶於恆溫703K退火2000秒處理後之line scan分析圖108
圖4-40 Zr61Cu17.5Al7.5Ni10Si4合金之晶粒尺寸與晶粒成長之時間關係圖109
圖4-41 Zr65Cu17.5Al7.5Ni10合金之晶粒尺寸與晶粒成長之時間關係圖109
圖4-42 Zr61Cu17.5Al7.5Ni10Si4合金之晶粒尺寸的三次方與晶粒成長之時間關係圖110
圖4-43 Zr65Cu17.5Al7.5Ni10合金之晶粒尺寸的三次方與晶粒成長之時間關係圖110
圖4-44 Zr61Cu17.5Al7.5Ni10Si4合金之成長活化能,ln[(Dt3-D03)/tg]對1000/Ta關係圖111
圖4-45 Zr65Cu17.5Al7.5Ni10合金之成長活化能,ln[(Dt3-D03)/tg]對1000/Ta關係圖111
圖4-46 Zr61Cu17.5Al7.5Ni10Si4合金薄帶於恆溫703K退火處理後破斷面之SEM觀察 (a)退火時間1000秒 (b)退火時間1500秒 (c)退火時間2000秒 (d)退火時間2500秒112
中文部份
[1]吳學陞,工業材料,149 (1999) 154.
[2]洪子翔, Master Thesis, Study of Thermal Properties in Zr-Al-Cu-Ni Amorphous Alloy by Adding Boron and Silicon, Kaohsiung, Taiwan, 2004
[3]鄭振東, 非晶質金屬漫談,建宏出版社,Taipei,Taiwan,1990.
[4]戴道生、韓汝琪,非晶態高等物理,電子業出版社,China,1984.
[5]Jason S. C. Jang, Y. W. Chen, and M. C. Yeh, 鑄造工程學刊, 第29卷,四期, 2003
英文部份
[1]A. Inoue and A. Makino, Nonostruct. Mater., 9 (1997) p.403.
[2]A. Inoue and C. Fan, Mat. Res. Soc. Symp. Proc., Vol.554, p.143, 1999.
[3]A. Inoue and J. S. Gook, Mater. Trans., JIM, 36 (1995) p.1180.
[4]A. Inoue and J. S. Gook, Mater. Trans., JIM, 37 (1996) p.32.
[5]A. Inoue and K. Hashimoto, Amorphous and Nanocrystalline Materials, 2001.
[6]A. Inoue, A. Kato, T. Zhang, S. G. Kim and T. Masumoto, Mater. Trans., JIM, 32 (1991) p.609.
[7]A. Inoue, A. Takeuchi and T. Zhang, Metall. Mater. Trans., A29 (1998) p.1779.
[8]A. Inoue, Acta Mater., 48 (2000) p.279.
[9]A. Inoue, Bluk Amouphous Alloys Practical Characteristics and Application Institute for Material Reserch, Tohoku University Katahira 2-1-1, Sendai 980-8577, Japan.
[10]A. Inoue, Buck Amorphous Alloys. Trans Tech Publications, Zurich, Swiss, 1998.
[11]A. Inoue, H. Koshiba, T. Zhang and A. Makino, J. Appl. Phys., 83 (1998) p.1967.
[12]A. Inoue, Intermetallics, 8 (2000) p.455.
[13]A. Inoue, K. Hashimoto,etal., Amorphous and Nanocrystalline Materials Springer, pp.24-26
[14]A. Inoue, K. Nakazato, Y. Kawamura, A. P. Tsai and T. Masumoto, Mater. Trans., JIM, 35 (1994) p.95.
[15]A. Inoue, M. Koshiba, T. Itoi and A. Makino, Appl. Phys. Lett., 73 (1998) p.744.
[16]A. Inoue, M. Koshiba, T.Zhang, and T. Masumoto, Appl. Phys., Vol.83, pp.1967-1972, 1998
[17]A. Inoue, Mater. Sci. Eng., A226-228 (1997) p.357.
[18]A. Inoue, Mater. Sci. Eng., A304-306 (2001) p.1.
[19]A. Inoue, Mater. Trans., JIM, vol.36, p.886, 1995
[20]A. Inoue, T. Nakamura, N. Nishiyama and T. Masumoto, Mater. Trans., JIM, 33 (1992) p.937.
[21]A. Inoue, T. Zhang and A. Takeuchi, Mater. Sci. Forum., 269-272 (1998) p.855.
[22]A. Inoue, T. Zhang and A. Takeuchi, Mater. Trans., JIM, 37 (1996) p.1731.
[23]A. Inoue, T. Zhang, W. Zhang, and A. Takeuchi, Mater. Trans., JIM, 37 (1996) p.99.
[24]A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, Acta Mater., 49 (2001) p.2645.
[25]A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, J. Mater. Res., 16 (2001) p.2836.
[26]A. Leonhard, M. Heilmaier, J. Eckert and L. Schultz, Mat. Res. Soc. Symp.Proc., 554 (1999) p.137.
[27]A. S. Argon and M. Salama, Mater. Sci. Eng., vol.23, p.219, 1976
[28]B. Li, N. Nordstrom and E. J. Lavernia, Mater. Sci. Eng., A237 (1997) p.207.
[29]B. S. Murty and K. Hono, Mater. Trans., JIM, 41 (2000) p.1538.
[30]B.-M. Im, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami and K. Hashimoto, Corros. Sci., 37 (1995) p.709.
[31]C. A. C. Sousa and C. S. Kiminami, J. Non-Cryst. Solids, 219 (1997) p.155.
[32]C. P. P. Chou and F. Spaepen, Acta metal., vol.23, p.609, 1975
[33]C. R. M. Afonso, C. Bolfarini, C. S. Kiminami, N. D. Bassim, M. J. Kaufman, M. F. Amateau, T. J. Eden and J. M. Galbraith, J. Non-Cryst. Solids, 284 (2001) p.134.
[34]Chung-Cherng Lin and Pouyan Shen, J. Solid State Chem., 112 (1994) p.387.
[35]D. Turnbull, Contemp. Phys., 10 (1969) p.473.
[36]D. W. Henderson, J. Non-Cryst. Solids, 30 (1979) p.301
[37]E. Matsubara, T. Tamura, Y. Easeda A. Inoue, T. Zhang, and T. Masumoto, Mater. Trans. JIM. 33 (1992) p.873.
[38]E. Pitt and J. Greiller, J. Fluid Met., vol.11, p.33, 1961
[39]F. E. Luborsky and J. L. Walter, J. appl. Phys. , vol.47,p.3648, 1976
[40]F. Spaepen and D. Tumbull, Scripta Met., vol.8, p.563, 1974
[41]F. Spaepen, Acta metal., vol.23, p615, 1975
[42]G. A. Mansourl, et al., J.Chem. Phy., vol.54, pp.1523-1527, 1971
[43]G. S. Fulcher, J. Amer. Cerm. Soc., 77 (1925) p.3701.
[44]H. Habazaki, H. Ukai, K. Izumiya and K. Hashimoto, Mater. Sci. Eng., A318 (2001) p.77.
[45]H. J. Guntherodt and H. Beck(ed), Glassy MetalsⅠ, Springer-Verlag, Berlin Heidelberg, Germany, 1981.
[46]H. S. Chen and C.E. Miller, Rev. Sci. Instrum, 41 (1970) p.1237.
[47]H. S. Chen, Etal. :Zridence of a Glass-Liquid Transition in a Gold-Germanium. J. Chem. Phys., vol.48, pp.2560-2565, 1968
[48]H. Yinnon and D.R. Uhlmann, J. Non-Cryst. Solids, 54 (1983) p.253.
[49]J. S. C. Jang, H. Y. Tsai, C.H. Tsau and C. J. Chen, The Minerals, Metals & Materials Society, (1992) p.95.
[50]J. Saida, C. Li, M. Matsushita, and A. Inoue, J. Mater. Sci., 35 (2000) p.4143.
[51]J. Vazquez, R. A. Ligero, P. Villares and R. Jimenez-Garay, Thermochim. Acta, 157 (1990) p.181.
[52]J. Vazquez, R. L. Lopez-Alemany, P. Villares and R. Jimenez-Garay, J. Phys. Chem. Solids, 61 (2000) p.493.
[53]J. W. Christian,The Theory of Transformations in Metals and Alloy, 2002
[54]K. L. Chapra, Thin Film Phenomena, McGraw-Hill, 1969.
[55]K. Matusita, T. Komatsu and R. Yokota, J. Mater. Sci., 19 (1984) p.291.
[56]L. J. Chang, Master Thesis, Crystallization Behavior of Zr-Al-Cu-Ni Bulk Amorphous Alloy Doped with Boron, Kaohsiung, Taiwan, 2003.
[57]M. Avrami, J. Chem. Phys. 7 (1939) p.1103.
[58]M. Avrami, J. Chem. Phys. 8 (1940) p.212.
[59]M. Avrami, J. Chem. Phys. 9 (1941) p.177.
[60]M. Naka, K. Hashimoto and T. Masumoto, J. Non-Cryst. Solids, 31 (1979) p.355.
[61]P. G. Saffman and G. I. Taylor, Proc. R. Soc., vol.245, p312, 1958
[62]P. S. Grant, Prog. Mater. Sci., 39 (1995) p.497.
[63]P. S. Steif, F. Spaepen and T. W. Hutchinson, Acta metal., vol.30, p.447, 1982
[64]R. E. Reed-Hill, Physical Metallurgy Principles, PWS, Boston, USA, 1994.
[65]R. Liu, J. Li, K. Dong, C. Zheng and H. Liu, Mater. Sci. Eng., B94 (2002) p.141.
[66]R. W. Cahn, P. Hassen and E. J. Kramer(ed), Materials Science and Technology Vol.9, New York, USA, 1991.
[67]Richard Zallen, The Physics of Amorphous Solids, A Wiley-Interscience, Canada,1983.
[68]S. R. Elliot, Physics of Amorphous Materials, USA, 1990.
[69]T. A. Waniuk, J. Schroers and W. L. Johnson, Appl. Phys. Lett., 78 (2001) p.1213.
[70]T. C. Chieh, J. Chu, C. T. Liu and J. K. Wu, Mater. Lett., 57 (2003) p.3022.
[71]T. D. Shen and R.B. Schwarz, Appl. Phys. Lett., 75 (1999) p.49.
[72]T. D. Shen and R.B. Schwarz, J. Mater. Res., 14 (1999) p.2107.
[73]T. Zhang and A. Inoue, Mat. Res. Soc. Symp. Proc., Vol.554, p.361, 1999.
[74]U. Koster, J. Meinhsrdt, S. Roos, and H. Liebertz, Appl. Phys. Lett., 69 (1996) p.179.
[75]V. Schroeder, C. Gilbert and R. Ritchie, Scripta Mater., 38 (1998) p.1481.
[76]W. A. Johnson and K. F. Mehl, Trans. Am. Inst. Mining Met. Eng., 135 (1981) p.315.
[77]W. H. Peter, R. A. Buchanan, C. T. Liu, P. K. Liaw, M. L. Morrison, J. A. Horton, C. A. Carmichael Jr. and J. L. Wright, Intermetallics, 10 (2002) p.1157.
[78]W. Klement, R. H. Wilens and P. Duwez, Nature, 187 (1960) p.869.
[79]W. L. Johnson, Materials Science Forum, vol.225-227, p.35, 1996.
[80]W. Paul and R. J. Temkin, Adv. Phys., (1973) p.531.
[81]W. W. Mullins and R. F. Sekerka, J. appl. Phys., vol.35, p.444, 1964
[82]Y. Hara, T. Ando, R.C. O’Handley and N. J. Grant, J. Appl. Phys., 62 (1987)1948.
[83]Z. P. Lu and C. T. Liu, Acta Mater., 50 (2002) p.3501.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top