跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/04 06:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:韓蕙安
研究生(外文):Han, Hui-An
論文名稱:原子轉移自由基聚合反應的配基開發與高分子結構對螢光放光的影響
論文名稱(外文):Development of Pyridyl-Imine Ligand Used in Atom Transfer Radical Polymerization and The Structural Effect to Fluorescent Intensity of Dye-labeled Polymers
指導教授:彭之皓
指導教授(外文):Peng, Chi-How
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:120
中文關鍵詞:原子轉移自由基聚合反應甲基丙烯酸甲酯苯乙烯星狀聚合物網狀聚合物螢光
外文關鍵詞:ATRPMethyl methacrylateNetwork polymerStyreneStar polymerFluorescence
相關次數:
  • 被引用被引用:0
  • 點閱點閱:257
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要分為三部分,第一部份是利用新穎的砒碇-亞胺銅金屬錯合物成功聚合甲基丙烯酸甲酯,將吡啶-亞胺銅金屬錯合物 CuII(paenMe2)Br2,以原子轉移自由基聚合 (ATRP) 與電子轉移活化原子轉移自由基聚合 (AGET ATRP) 的方法成功地控制甲基丙烯酸甲酯聚合反應的分子量分布 (Mw/Mn = 1.14 ~ 1.18) ,且實際分子量符合理論分子量 (Mn ~ Mn,th)。
第二部份是利用AGET ATRP的技術合成嵌有芘 (Pyrene) 螢光團的鏈狀、星狀及網狀聚苯乙烯,探討結構的變化對螢光強度的影響。實驗結果發現鏈狀及網狀聚苯乙烯其螢光強度皆會隨著單體轉換率的增加而上升,但網狀聚合物的螢光上升幅度較鏈狀聚合物小,推測可能是因為受到交聯劑 (Cross-linker) 的束縛,使得網狀聚苯乙烯的結構較固定,芘與芘、苯乙烯和苯乙烯之間的π-π作用力較小,因此螢光上升幅度較小。而星狀聚合物的螢光強度則是在聚合初期先下降,爾後上升,推測可能是因為在反應初期星狀聚合物的側鏈 (Arm) 會與大量的交聯劑進行反應,側鏈上的螢光團被大量的交聯劑包圍使得螢光強度下降; 在形成星狀聚苯乙烯後,可能因為星狀聚苯乙烯側鏈數目的增加以及星狀聚苯乙烯間耦合的現象,使得不論分子內及分子間,側鏈與側鏈、芘與芘的π-π作用力增強,因此螢光強度上升。
第三部份則是探討末端嵌有螢光團嵌段共聚物 (Block copolymer) 的自組裝情形。合成pyrene-PMMA-b-PSt、naphthalene-PMMA-b-PSt、pyrene-PSt-b-PMMA及 naphthalene-PSt-b-PMMA,但利用小角度X光散射儀和穿透式電子顯微鏡並未觀察到明顯的相分離效果,推測可能是因為螢光團間的π-π作用力影響了自組裝的效果,或是聚苯乙烯 (PSt) 與聚甲基丙烯酸甲酯 (PMMA) 間的溶解參數太相近 (δPSt = 9.1, δPMMA = 9.2-9.4 cal/cm3),使得相分離效果不佳,導致沒有明顯的自組裝發生。

Pyridyl-imine copper complex, CuII(paenMe2)Br2, was used to mediate the normal and AGET (Activators generated by electron transfer) ATRP of methyl methacrylate. The different initiators, ratios of ligand and the lengths of copper wires were tuned. The polymeric products showed a low polydispersity (Mw/Mn = 1.14 ~ 1.18) and the molecular weight matched the theoretical values.
Besides, the pyrene-labeled polymers with structure of linear, star and network were synthesized by AGET ATRP. Observing the fluorescent intensity changes of polymers by PL, we found the fluorescent intensity of star polymer decreased at the beginning and increased afterwards. For linear and network polymers, the fluorescent intensity increased with conversion increasing.
The block copolymers of pyrene-PMMA-b-PSt, naphthalene-PMMA-b-PSt, pyrene-PSt-b-PMMA and naphthalene-PSt-b-PMMA were synthesized to observe their self-assembly effect. However, using SAXS (Small angle x-ray scattering) and TEM (Transmission electron microscopy) to observe the structure of block copolymers, the ordered arrangement and microphase separation were not found.

Abstract...................................................................................................................................i
摘要........................................................................................................................................ii
謝誌.......................................................................................................................................iv
目錄........................................................................................................................................v
圖...........................................................................................................................................ix
表.........................................................................................................................................xiii
流程圖..................................................................................................................................xv
附錄....................................................................................................................................xvi
第一章 緒論..........................................................................................................................1
1-1 可控自由基聚合反應原理.....................................................................................2
1-2 可控自由基聚合反應方法.....................................................................................4
1-2-1 氮氧自由基聚合反應 (NMP) ...................................................................4
1-2-2 可逆加成-斷裂鏈轉移聚合反應 (RAFT polymerization) .......................5
1-2-3 原子轉移自由基聚合反應 (ATRP) ..........................................................6
1-2-4 電子轉移活化(再生)原子轉移自由基聚合反應 (A(R)GET ATRP).....................................................................................................................10
1-2-5 起始劑持續活化再生原子轉移自由基聚合反應 (ICAR ATRP) ..........11
1-2-6 補充活化劑與還原劑原子轉移自由基聚合反應 (SARA ATRP) .........12
1-2-7 電化學引發原子轉移自由基聚合反應 (eATRP).................................14
1-3利用可控自由基聚合反應方法製備枝狀聚合物...............................................16
1-3-1星狀聚合物...............................................................................................17
1-3-2 網狀聚合物..............................................................................................19
1-4 研究目的與動機.................................................................................................20
第二章 亞胺銅錯合物催化原子轉移及電子轉移活化原子轉移自由基聚合反應.......21
2-1 前言.....................................................................................................................22
2-2 實驗部分.............................................................................................................23
2-2-1 化學藥品..................................................................................................23
2-2-2 合成..........................................................................................................24
2-2-3 聚合反應..................................................................................................25
2-3晶體鑑定與構造討論...........................................................................................27
2-4原子轉移自由基聚合甲基丙烯酸甲酯..............................................................30
2-4-1 不同起始劑測試CuI(paenMe2)Br催化原子轉移自由基聚合甲基丙烯酸甲酯................................................................................................................30
2-4-2 不同配位基比例測試CuI(paenMe2)Br催化原子轉移自由基聚合甲基丙烯酸甲酯........................................................................................................32
2-5 不同銅線長度測試CuI(paenMe2)Br催化電子轉移活化原子轉移自由基聚合 甲基丙烯酸甲酯..........................................................................................................33
2-6 結論....................................................................................................................35
第三章 嵌有螢光團之聚合物的結構變化對螢光強度的影響.....................................36
3-1 前言....................................................................................................................37
3-2 實驗部分............................................................................................................39
3-2-1 化學藥品.................................................................................................39
3-2-2 螢光團起始劑的合成.............................................................................40
3-2-3 聚合反應.................................................................................................42
3-3 電子轉移活化原子轉移自由基聚合嵌有芘之鏈狀聚苯乙烯........................44
3-4 電子轉移活化原子轉移自由基聚合嵌有芘之星狀聚苯乙烯........................46
3-5利用掃描穿隧式電子顯微鏡觀察嵌有芘之星狀聚苯乙烯.............................52
3-6 電子轉移活化原子轉移自由基聚合嵌有芘之網狀聚苯乙烯........................54
3-7 比較嵌有芘之鏈狀聚苯乙烯和網狀聚苯乙烯在螢光強度上之變化............58
3-8 結論....................................................................................................................60
第四章 探討嵌有螢光團之嵌段共聚物的自組裝行為.................................................61
4-1前言.....................................................................................................................62
4-2實驗部分.............................................................................................................65
4-2-1 化學藥品................................................................................................65
4-2-2 螢光團起始劑的合成............................................................................66
4-2-3 聚合實驗步驟........................................................................................68
4-3 嵌段共聚物之合成...........................................................................................71
4-4 觀察嵌有螢光團之嵌段共聚物的相分離變化.................................................81
4-5 結論.....................................................................................................................85
儀器....................................................................................................................................86
參考文獻............................................................................................................................90
附錄....................................................................................................................................94

1. Peng, C.-H.; Liao, C.-M.; Hsu, C.-C.; Wang, F.-S.; Wayland, B., Polym. Chem. 2013, 4, 3098–3104.
2. David, G.; Boyer, C.; Tonnar, J.; Ameduri, B.; Lacroix-Desmazes, P.; Boutevin, B., Chem. Rev. 2006, 106, 3936-3962.
3. Yamago, S.; Iida, K.; Yoshida, J.-i., J. Am. Chem. Soc. 2002, 124, 2874-2875.
4. Moad, G.; Rizzardo, E.; Thang, S. H., Aust. J. Chem. 2012, 65, 985-1076.
5. Moad, G.; Rizzardo, E.; Thang, S. H., Aust. J. Chem. 2009, 62, 1402-1472.
6. Perrier, S.; Takolpuckdee, P., J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 5347-5393.
7. Moad, G.; Rizzardo, E.; Thang, S. H., Aust. J. Chem. 2005, 58, 379-410.
8. Georges, M. K.; Veregin, R. P.; Kazmaier, P. M.; Hamer, G. K., Macromolecules 1993, 26, 2987-2988.
9. Wang, J.-S.; Matyjaszewski, K., J. Am. Chem. Soc. 1995, 117, 5614-5615.
10. Percec, V.; Barboiu, B., Macromolecules 1995, 28, 7970-7972.
11. Matyjaszewski, K.; Xia, J., Chem. Rev. 2001, 101, 2921-2990.
12. Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T., Macromolecules 1995, 28, 1721-1723.
13. Kamigaito, M.; Ando, T.; Sawamoto, M., Chem. Rev. 2001, 101, 3689-746.
14. Cunningham, M. F., Prog. Polym. Sci. 2008, 33, 365-398.
15. Ouchi, M.; Terashima, T.; Sawamoto, M., Chem. Rev. 2009, 109, 4963-5050.
16. Rosen, B. M.; Percec, V., Chem. Rev. 2009, 109, 5069-5119.
17. Chiefari, J.; Chong, Y.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P.; Mayadunne, R. T.; Meijs, G. F.; Moad, C. L.; Moad, G., Macromolecules 1998, 31, 5559-5562.
18. Braunecker, W. A.; Matyjaszewski, K., Prog. Polym. Sci. 2007, 32, 93-146.
19. Gao, H.; Matyjaszewski, K., Prog. Polym. Sci. 2009, 34, 317-350.
20. Chen, H.-Y.; Lahann, J., Langmuir 2010, 27, 34-48.
21. Siegwart, D. J.; Oh, J. K.; Matyjaszewski, K., Prog. Polym. Sci. 2012, 37, 18-37.
22. Wu, D.; Xu, F.; Sun, B.; Fu, R.; He, H.; Matyjaszewski, K., Chem. Rev. 2012, 112, 3959-4015.
23. Matyjaszewski, K.; Tsarevsky, N. V., Nat. Chem. 2009, 1, 276-288.
24. Matyjaszewski, K., Macromolecules 2012, 45, 4015-4039.
25. Hawker, C. J.; Bosman, A. W.; Harth, E., Chem. Rev. 2001, 101, 3661-3688.
26. Debuigne, A.; Caille, J. R.; Jérôme, R., Angew. Chem. 2005, 117, 1125-1128.
27. Peng, C.-H.; Scricco, J.; Li, S.; Fryd, M.; Wayland, B. B., Macromolecules 2008, 41, 2368-2373.
28. Tang, W.; Tsarevsky, N. V.; Matyjaszewski, K., J. Am. Chem. Soc. 2006, 128, 1598-1604.
29. Tang, W.; Kwak, Y.; Braunecker, W.; Tsarevsky, N. V.; Coote, M. L.; Matyjaszewski, K., J. Am. Chem. Soc. 2008, 130, 10702-10713.
30. Pintauer, T.; Matyjaszewski, K., Chem. Rev. 2008, 37, 1087-1097.
31. Wang, Y.; Matyjaszewski, K., Macromolecules 2010, 43, 4003-4005.
32. Deng, Z.; Guo, J.; Qiu, L.; Yuan, C.; Zhou, Y.; Yan, F., J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 664-671.
33. Duquesne, E.; Habimana, J.; Degée, P.; Dubois, P., Macromolecules 2005, 38, 9999-10006.
34. Tang, W.; Matyjaszewski, K., Macromolecules 2006, 39, 4953-4959.
35. Horn, M.; Matyjaszewski, K., Macromolecules 2013, 46, 3350-3357.
36. Seeliger, F.; Matyjaszewski, K., Macromolecules 2009, 42, 6050-6055.
37. Zhong, M.; Matyjaszewski, K., Macromolecules 2011, 44, 2668–2677.
38. Jakubowski, W.; Matyjaszewski, K., Macromolecules 2005, 38, 4139-4146.
39. Kwak, Y.; Magenau, A. J.; Matyjaszewski, K., Macromolecules 2011, 44, 811-819.
40. Jakubowski, W.; Matyjaszewski, K., Angew. Chem. Int. Ed. 2006, 118, 4594-4598.
41. Min, K.; Gao, H. F.; Matyjaszewski, K., Macromolecules 2007, 40, 1789-1791.
42. Zhang, Y. Z.; Wang, Y.; Matyjaszewski, K., Macromolecules 2011, 44, 683-685.
43. Kwak, Y.; Matyjaszewski, K., Polym. Int. 2009, 58, 242-247.
44. Matyjaszewski, K.; Jakubowski, W.; Min, K.; Tang, W.; Huang, J.; Braunecker, W. A.; Tsarevsky, N. V., Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 15309-15314.
45. Percec, V.; Guliashvili, T.; Ladislaw, J. S.; Wistrand, A.; Stjerndahl, A.; Sienkowska, M. J.; Monteiro, M. J.; Sahoo, S., J. Am. Chem. Soc. 2006, 128, 14156-14165.
46. Zhang, Q.; Wilson, P.; Li, Z.; McHale, R.; Godfrey, J.; Anastasaki, A.; Waldron, C.; Haddleton, D. M., J. Am. Chem. Soc. 2013, 135, 7355–7363.
47. Zhang, Y.; Wang, Y.; Peng, C.-H.; Zhong, M.; Zhu, W.; Konkolewicz, D.; Matyjaszewski, K., Macromolecules 2011, 45, 78-86.
48. Peng, C.-H.; Zhong, M.; Wang, Y.; Kwak, Y.; Zhang, Y.; Zhu, W.; Tonge, M.; Buback, J.; Park, S.; Krys, P., Macromolecules 2013, 46, 3803–3815.
49. Wang, Y.; Zhong, M.; Zhu, W.; Peng, C.-H.; Zhang, Y.; Konkolewicz, D.; Bortolamei, N.; Isse, A. A.; Gennaro, A.; Matyjaszewski, K., Macromolecules 2013, 46, 3793–3802.
50. Zhong, M.; Wang, Y.; Krys, P.; Konkolewicz, D.; Matyjaszewski, K., Macromolecules 2013, 46, 3816–3827.
51. Magenau, A. J.; Strandwitz, N. C.; Gennaro, A.; Matyjaszewski, K., Science 2011, 332, 81-84.
52. Wang, F.; Bronich, T.K.; Kabanov, A. V.; Rauh, R.D.; Roovers, J., Bioconjugate Chem. 2005, 16, 397-405.
53. Helms, B.; Guillaudeu, S. J.; Xie, Y.; McMurdo, M.; Hawker, C. J.; Fréchet, J. M., Angew. Chem. Int. Ed. 2005, 44, 6384-6387.
54. Park, S.; Zhong, M.; Lee, T.; Paik, H.-J.; Matyjaszewski, K., ACS Appl. Mater. Interfaces 2012, 4, 5949−5955.
55. Li, B.; Yu, B.; Huck, W. T.; Liu, W.; Zhou, F., J. Am. Chem. Soc. 2013, 135, 1708–1710.
56. Tang, H.; Arulsamy, N.; Radosz, M.; Shen, Y.; Tsarevsky, N. V.; Braunecker, W. A.; Tang, W.; Matyjaszewski, K., J. Am. Chem. Soc. 2006, 128, 16277-16285.
57. Perrier, S.; Berthier, D.; Willoughby, I.; Batt-Coutrot, D.; Haddleton, D. M., Macromolecules 2002, 35, 2941-2948.
58. Haddleton, D. M.; Jasieczek, C. B.; Hannon, M. J.; Shooter, A. J., Macromolecules 1997, 30, 2190-2193.
59. Haddleton, D. M.; Crossman, M. C.; Dana, B. H.; Duncalf, D. J.; Heming, A. M.; Kukulj, D.; Shooter, A. J., Macromolecules 1999, 32, 2110-2119.
60. Turner, S. A.; Remillard, Z. D.; Gijima, D. T.; Gao, E.; Pike, R. D.; Goh, C., Inorg. Chem. 2012, 51, 10762-10773.
61. Zakrzewski, G.; Sacconi, L., Inorg. Chem. 1968, 7, 1034-1036.
62. Bamfield, P.; Price, R.; Miller, R., Inorg . Phys . Theor. 1969, 1447-1452.
63. Kickelbick, G.; Pintauer, T.; Matyjaszewski, K., New J. Chem. 2002, 26, 462-468.
64. Gao, H.; Li, W.; Matyjaszewski, K., Macromolecules 2008, 41, 2335-2340.
65. Hadjichristidisa, N.; Iatroua, H.; Pitsikalisa, M.; Mays, J., Prog. Polym. Sci. 2006, 31, 1068-1132.
66. Li, Y.; Armes, S. P., Macromolecules 2005, 38, 8155-8162.
67. Gao, H.; Matyjaszewski, K., Prog. Polym. Sci. 2009, 34, 317–350.
68. Yan., J.-J.; Wang, Z.-K.; Lin, X.-S.; Hong, C.-Y.; Liang, H.-J.; Pan, C.-Y.; You, Y.-Z., Adv. Mater. 2012, 24, 5617–5624.
69. Zhao, M.; Yang, L.; Zhang, R.; Dong, J.; Dong, H.; Wen, Y.; Zhan, X.; Wang, G.; Lu, Y.; Wang, G.; Polymer 2013, 54, 297-302.
70. Dore´, K.; Dubus, S.; Ho, H.-A.; Le´vesque, I.; Brunette, M.; Corbeil, G.; Boissinot, M.; Boivin, G.; Bergeron, M.G.; Boudreau, D.; Leclerc, M., J. Am. Chem. Soc. 2004, 126, 4240-4244.
71. Liu, K.; Liu, T.; Chen, X.; Sun, X.; Fang, Y., ACS Appl. Mater. Interfaces 2013, 5, 9830-9836.
72. Xu, Q.; Lee, S.; Cho, Y.; Kim, M.-H.; Bouffard, J.; Yoon, J., J. Am. Chem. Soc. 2013, 135, 17751−17754.
73. Chen, M.; Ghiggino, K.P.; Rizzardo, E.; Thang, S. H.; Wilson, G. J., Chem. Commun. 2008, 1112–1114.
74. Zhao, K.; Cheng, Z.; Zhang, Z.; Zhu, J.; Zhu, X., Polym. Bull. 2009, 63, 355–364.
75. Zhou, N.; Lu, L.; Zhu, J.; Yang, X.; Wang, X.; Zhu, X.; Zhang, Z., Polymer 2007, 48, 1255-1260.
76. Malashikhin S.; Finney, N. S., J. Am. Chem. Soc. 2008, 130, 12846-12847.
77. Zilliox, J.-G.; Rempp, P.; Parrod, J., J Polym Sci, Polym Symp 1968, 22, 145–56.
78. Natta, G.; Corradini, P.; Bassi, I., Nuovo Cimento 1960, 15, 68-82.
79. Grzelczak, M.; Vermant,J.; Furst, E. M.; Liz-Marza´n, L.M., ACS nano 2010, 4, 3591-3605.
80. Luo, M.; Epps, T. H., Macromolecules 2013, 46, 7567−7579.
81. Nunes, S. P.; Car, A., Ind. Eng. Chem. Res. 2013, 52, 993−1003.
82. Black, C. T., ACS nano 2007, 1, 147-150.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 利用不同鈷金屬錯合物在醋酸乙烯酯活性自由基聚合之機理研究
2. 有機鈷金屬錯合物 CoII(BpyBph) 在可控/活性自由基聚合反應上的研究
3. 1. 功能性高分子 PDPyMA 的合成與應用 2. 矽膠交聯之熟成控制 3. Co(Salen*) 在水相中催化之自由基聚合反應
4. 臺灣文學中的「滿洲」想像及再現(1931─1945)
5. 順式二苯乙烯/芴螺旋體衍生之雙極型混成體於有機電激發光二極體和染料敏化太陽能電池材料之應用
6. 樟腦醯胺為掌性輔助基應用於 (+)-α-Allokainic acid 之不對稱合成研究
7. 合成新型抗黃病毒科之香豆素共軛腺苷酸衍生物
8. 含鈣及鐿之雙鉻金屬錯合物之反應性研究
9. 溶液酸鹼值對人類 Pin1 穩定性及含脯胺酸衍生物之基質對其酵素活性效率影響
10. 有機半導體薄膜在金(111)與其修飾表面上的成長、結構與電晶體之應用
11. 十二分支金奈米顆粒合成與生長機構探討
12. N-亞柳胺基酸及N-亞柳胺基四氮唑衍生之掌性氧釩錯合物催化不對稱還原和醛醇加成反應
13. 具可變式配體之環境敏感螢光探針對蛋白質及磺胺類藥物之選擇性檢測
14. 以 N-亞柳胺基酸及 N-亞柳胺基四氮唑之掌性釩氧錯合物催化不對稱醛醇加成反應之研究
15. 利用飛秒瞬態吸收光譜技術研究不同溶劑中4-苯胺基反式雙苯乙烯與4-對苯腈基苯胺基反式雙苯乙烯 之激發態動力學