|
1. Geffen, D.B. and S. Man, New drugs for the treatment of cancer, 1990-2001. Isr Med Assoc J, 2002. 4(12): p. 1124-31. 2. Hsiang, Y.H., et al., Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem, 1985. 260(27): p. 14873-8. 3. Tewey, K.M., et al., Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science, 1984. 226(4673): p. 466-8. 4. Horwitz, S.B., et al., Taxol: mechanisms of action and resistance. J Natl Cancer Inst Monogr, 1993(15): p. 55-61. 5. Longley, D.B., D.P. Harkin, and P.G. Johnston, 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer, 2003. 3(5): p. 330-8. 6. Raguz, S. and E. Yague, Resistance to chemotherapy: new treatments and novel insights into an old problem. British Journal of Cancer, 2008. 99(3): p. 387-391. 7. Wong, H.L., et al., A mechanistic study of enhanced doxorubicin uptake and retention in multidrug resistant breast cancer cells using a polymer-lipid hybrid nanoparticle system. J Pharmacol Exp Ther, 2006. 317(3): p. 1372-81. 8. Wang, A.Z., R. Langer, and O.C. Farokhzad, Nanoparticle Delivery of Cancer Drugs. Annual Review of Medicine, Vol 63, 2012. 63: p. 185-198. 9. Beija, M., et al., Colloidal systems for drug delivery: from design to therapy. Trends in Biotechnology, 2012. 30(9): p. 485-496. 10. Albanese, A., P.S. Tang, and W.C. Chan, The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng, 2012. 14: p. 1-16. 11. Brannon-Peppas, L. and J.O. Blanchette, Nanoparticle and targeted systems for cancer therapy. Advanced Drug Delivery Reviews, 2012. 64: p. 206-212. 12. Longmire, M., P.L. Choyke, and H. Kobayashi, Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine, 2008. 3(5): p. 703-717. 13. Osada, K., R.J. Christie, and K. Kataoka, Polymeric micelles from poly(ethylene glycol)-poly(amino acid) block copolymer for drug and gene delivery. Journal of the Royal Society Interface, 2009. 6: p. S325-S339. 14. Maeda, H., et al., Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release, 2000. 65(1-2): p. 271-84. 15. Brannon-Peppas, L. and J.O. Blanchette, Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev, 2004. 56(11): p. 1649-59. 16. Maeda, H., Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjug Chem, 2010. 21(5): p. 797-802. 17. Byrne, J.D., T. Betancourt, and L. Brannon-Peppas, Active targeting schemes for nanoparticle systems in cancer therapeutics. Advanced Drug Delivery Reviews, 2008. 60(15): p. 1615-1626. 18. Quintana, A., et al., Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharmaceutical Research, 2002. 19(9): p. 1310-1316. 19. Luqmani, Y.A., Mechanisms of drug resistance in cancer chemotherapy. Med Princ Pract, 2005. 14 Suppl 1: p. 35-48. 20. Mura, S., J. Nicolas, and P. Couvreur, Stimuli-responsive nanocarriers for drug delivery. Nat Mater, 2013. 12(11): p. 991-1003. 21. Bae, Y., et al., Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: Tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjugate Chemistry, 2005. 16(1): p. 122-130. 22. Lee, S.M., et al., Polymer-caged lipsomes: A pH-Responsive delivery system with high stability. Journal of the American Chemical Society, 2007. 129(49): p. 15096-+. 23. Wang, C.H., S.T. Kang, and C.K. Yeh, Superparamagnetic iron oxide and drug complex-embedded acoustic droplets for ultrasound targeted theranosis. Biomaterials, 2013. 34(7): p. 1852-1861. 24. Huang, S.L. and R.C. MacDonald, Acoustically active liposomes for drug encapsulation and ultrasound-triggered release. Biochim Biophys Acta, 2004. 1665(1-2): p. 134-41. 25. Yavuz, M.S., et al., Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nature Materials, 2009. 8(12): p. 935-939. 26. Dong, X. and R.J. Mumper, Nanomedicinal strategies to treat multidrug-resistant tumors: current progress. Nanomedicine (Lond), 2010. 5(4): p. 597-615. 27. Dong, X., et al., Doxorubicin and paclitaxel-loaded lipid-based nanoparticles overcome multidrug resistance by inhibiting P-glycoprotein and depleting ATP. Cancer Res, 2009. 69(9): p. 3918-26. 28. Jin, S.E., H.E. Jin, and S.S. Hong, Targeted delivery system of nanobiomaterials in anticancer therapy: from cells to clinics. Biomed Res Int, 2014. 2014: p. 814208. 29. Etheridge, M.L., et al., The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine-Nanotechnology Biology and Medicine, 2013. 9(1): p. 1-14. 30. Al-Jamal, W.T. and K. Kostarelos, Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc Chem Res, 2011. 44(10): p. 1094-104. 31. Malam, Y., M. Loizidou, and A.M. Seifalian, Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci, 2009. 30(11): p. 592-9. 32. Torchilin, V.P., Recent advances with liposomes as pharmaceutical carriers. Nature Reviews Drug Discovery, 2005. 4(2): p. 145-160. 33. Immordino, M.L., F. Dosio, and L. Cattel, Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine, 2006. 1(3): p. 297-315. 34. Andriyanov, A.V., et al., Therapeutic efficacy of combining pegylated liposomal doxorubicin and radiofrequency (RF) ablation: comparison between slow-drug-releasing, non-thermosensitive and fast-drug-releasing, thermosensitive nano-liposomes. PLoS One, 2014. 9(5): p. e92555. 35. Leung, S.J. and M. Romanowski, Light-activated content release from liposomes. Theranostics, 2012. 2(10): p. 1020-36. 36. Kumari, A., S.K. Yadav, and S.C. Yadav, Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces, 2010. 75(1): p. 1-18. 37. Dinarvand, R., et al., Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. Int J Nanomedicine, 2011. 6: p. 877-95. 38. Gopferich, A., Mechanisms of polymer degradation and erosion. Biomaterials, 1996. 17(2): p. 103-114. 39. Dinarvand, R., et al., Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. International Journal of Nanomedicine, 2011. 6: p. 877-895. 40. Elzoghby, A.O., Gelatin-based nanoparticles as drug and gene delivery systems: Reviewing three decades of research. Journal of Controlled Release, 2013. 172(3): p. 1075-1091. 41. Cascone, M.G., et al., Gelatin nanoparticles produced by a simple W/O emulsion as delivery system for methotrexate. Journal of Materials Science-Materials in Medicine, 2002. 13(5): p. 523-526. 42. Choubey, J. and A.K. Bajpai, Investigation on magnetically controlled delivery of doxorubicin from superparamagnetic nanocarriers of gelatin crosslinked with genipin. J Mater Sci Mater Med, 2010. 21(5): p. 1573-86. 43. Li, W.M., D.M. Liu, and S.Y. Chen, Amphiphilically-modified gelatin nanoparticles: Self-assembly behavior, controlled biodegradability, and rapid cellular uptake for intracellular drug delivery. Journal of Materials Chemistry, 2011. 21(33): p. 12381-12388. 44. Lu, Z., et al., Paclitaxel-loaded gelatin nanoparticles for intravesical bladder cancer therapy. Clin Cancer Res, 2004. 10(22): p. 7677-84. 45. Won, Y.W., et al., Nano Self-Assembly of Recombinant Human Gelatin Conjugated with alpha-Tocopheryl Succinate for Hsp90 Inhibitor, 17-AAG, Delivery. Acs Nano, 2011. 5(5): p. 3839-3848. 46. Bajpai, A.K. and J. Choubey, In vitro release dynamics of an anticancer drug from swellable gelatin nanoparticles. Journal of Applied Polymer Science, 2006. 101(4): p. 2320-2332. 47. Amass, W., A. Amass, and B. Tighe, A review of biodegradable polymers: Uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polymer International, 1998. 47(2): p. 89-144. 48. Danhier, F., et al., PLGA-based nanoparticles: an overview of biomedical applications. J Control Release, 2012. 161(2): p. 505-22. 49. Makadia, H.K. and S.J. Siegel, Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers, 2011. 3(3): p. 1377-1397. 50. Astete, C.E. and C.M. Sabliov, Synthesis and characterization of PLGA nanoparticles. J Biomater Sci Polym Ed, 2006. 17(3): p. 247-89. 51. Cheng, J., et al., Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials, 2007. 28(5): p. 869-76. 52. Luo, R., B. Neu, and S.S. Venkatraman, Surface functionalization of nanoparticles to control cell interactions and drug release. Small, 2012. 8(16): p. 2585-94. 53. Tewes, F., et al., Comparative study of doxorubicin-loaded poly(lactide-co-glycolide) nanoparticles prepared by single and double emulsion methods. Eur J Pharm Biopharm, 2007. 66(3): p. 488-92. 54. Takenaga, M., et al., Administration of optimum sustained-insulin release PLGA microcapsules to spontaneous diabetes-prone BB/Wor//Tky rats. Drug Deliv, 2006. 13(2): p. 149-57. 55. Hadinoto, K., A. Sundaresan, and W.S. Cheow, Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur J Pharm Biopharm, 2013. 85(3 Pt A): p. 427-43. 56. Tan, S., et al., Lipid-enveloped hybrid nanoparticles for drug delivery. Nanoscale, 2013. 5(3): p. 860-72. 57. Yang, Z., et al., Targeted delivery of 10-hydroxycamptothecin to human breast cancers by cyclic RGD-modified lipid-polymer hybrid nanoparticles. Biomed Mater, 2013. 8(2): p. 025012. 58. Shi, J., et al., Differentially charged hollow core/shell lipid-polymer-lipid hybrid nanoparticles for small interfering RNA delivery. Angew Chem Int Ed Engl, 2011. 50(31): p. 7027-31. 59. Zhang, L., et al., Self-assembled lipid--polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano, 2008. 2(8): p. 1696-702. 60. Gupta, A.K. and M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005. 26(18): p. 3995-4021. 61. Mahmoudi, M., et al., Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev, 2011. 63(1-2): p. 24-46. 62. Cole, A.J., V.C. Yang, and A.E. David, Cancer theranostics: the rise of targeted magnetic nanoparticles. Trends Biotechnol, 2011. 29(7): p. 323-32. 63. Chang, M., et al., Homologous RBC-derived vesicles as ultrasmall carriers of iron oxide for magnetic resonance imaging of stem cells. Nanotechnology, 2010. 21(23). 64. Wadajkar, A.S., et al., Design and Application of Magnetic-based Theranostic Nanoparticle Systems. Recent Pat Biomed Eng, 2013. 6(1): p. 47-57. 65. Shun Shen , S.W., Rui Zheng , Xiaoyan Zhu , Xinguo Jiang , Deliang Fu , and W. Yang, Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation. Biomaterials, 2015. 66. Kong, S.D., et al., Magnetic field activated lipid-polymer hybrid nanoparticles for stimuli-responsive drug release. Acta Biomaterialia, 2013. 9(3): p. 5447-5452. 67. Ling, Y., et al., Dual docetaxel/superparamagnetic iron oxide loaded nanoparticles for both targeting magnetic resonance imaging and cancer therapy. Biomaterials, 2011. 32(29): p. 7139-50. 68. Liu, X.Q., et al., Preparation and characterization of biodegradable magnetic carriers by single emulsion-solvent evaporation. Journal of Magnetism and Magnetic Materials, 2007. 311(1): p. 84-87. 69. Yang, J., et al., Antibody conjugated magnetic PLGA nanoparticles for diagnosis and treatment of breast cancer. Journal of Materials Chemistry, 2007. 17(26): p. 2695-2699. 70. Chiang, W.L., et al., Pulsatile Drug Release from PLGA Hollow Microspheres by Controlling the Permeability of Their Walls with a Magnetic Field. Small, 2012. 8(23): p. 3584-3588. 71. Cheng, L., et al., Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy. Biomaterials, 2012. 33(7): p. 2215-22. 72. Murphy, C.J., et al., Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. Journal of Physical Chemistry B, 2005. 109(29): p. 13857-13870. 73. Spadavecchia, J., et al., Bioconjugated gold nanorods to enhance the sensitivity of FT-SPR-based biosensors. Colloids and Surfaces B-Biointerfaces, 2012. 100: p. 1-8. 74. Huang, X.H., et al., Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers in Medical Science, 2008. 23(3): p. 217-228. 75. Chen, C.L., et al., In situ real-time investigation of cancer cell photothermolysis mediated by excited gold nanorod surface plasmons. Biomaterials, 2010. 31(14): p. 4104-12. 76. Huff, T.B., et al., Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine (Lond), 2007. 2(1): p. 125-32. 77. Tong, L., et al., Gold nanorods mediate tumor cell death by compromising membrane integrity. Advanced Materials, 2007. 19(20): p. 3136-+. 78. Schnarr, K., et al., Gold Nanoparticle-Loaded Neural Stem Cells for Photothermal Ablation of Cancer. Advanced Healthcare Materials, 2013. 2(7): p. 976-982. 79. Chang, Y.T., et al., Near-Infrared Light-Responsive Intracellular Drug and siRNA Release Using Au Nanoensembles with Oligonucleotide-Capped Silica Shell. Advanced Materials, 2012. 24(25): p. 3309-3314. 80. Huang, Y., et al., Biomedical nanomaterials for imaging-guided cancer therapy. Nanoscale, 2012. 4(20): p. 6135-49. 81. Alkilany, A.M., et al., Gold nanorods: Their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Advanced Drug Delivery Reviews, 2012. 64(2): p. 190-199. 82. Zhang, Z.J., et al., Mesoporous Silica-Coated Gold Nanorods as a Light-Mediated Multifunctional Theranostic Platform for Cancer Treatment. Advanced Materials, 2012. 24(11): p. 1418-1423. 83. Sau, T.K. and C.J. Murphy, Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir, 2004. 20(15): p. 6414-6420. 84. Kinnear, C., et al., Gold Nanorods: Controlling Their Surface Chemistry and Complete Detoxification by a Two-Step Place Exchange. Angewandte Chemie-International Edition, 2013. 52(7): p. 1934-1938. 85. Thierry, B., et al., A robust procedure for the functionalization of gold nanorods and noble metal nanoparticles. Chem Commun (Camb), 2009(13): p. 1724-6. 86. Sun, H.L., et al., Biodegradable micelles with sheddable poly(ethylene glycol) shells for triggered intracellular release of doxorubicin. Biomaterials, 2009. 30(31): p. 6358-6366. 87. Peng, C.A. and S. Pachpinde, Longitudinal Plasmonic Detection of Glucose Using Gold Nanorods. Nanomaterials and Nanotechnology, 2014. 4. 88. Chevalier, Y. and M.A. Bolzinger, Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2013. 439: p. 23-34. 89. Vilchez, A., et al., Antagonistic Effects between Magnetite Nanoparticles and a Hydrophobic Surfactant in Highly Concentrated Pickering Emulsions. Langmuir, 2014. 30(18): p. 5064-5074. 90. Pons, T., et al., Hydrodynamic dimensions, electrophoretic mobility, and stability of hydrophilic quantum dots. J Phys Chem B, 2006. 110(41): p. 20308-16. 91. Huang, X. and C.S. Brazel, On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. Journal of Controlled Release, 2001. 73(2-3): p. 121-136. 92. Shustik, C., W. Dalton, and P. Gros, P-glycoprotein-mediated multidrug resistance in tumor cells: biochemistry, clinical relevance and modulation. Mol Aspects Med, 1995. 16(1): p. 1-78. 93. Li, B., et al., Bypassing multidrug resistance in human breast cancer cells with lipid/polymer particle assemblies. International Journal of Nanomedicine, 2012. 7: p. 187-197. 94. Nemati, F., et al., Reversion of multidrug resistance using nanoparticles in vitro: Influence of the nature of the polymer. International Journal of Pharmaceutics, 1996. 138(2): p. 237-246.
|