|
1. Agresti, A., Bini, M., Bertaccini, B., and Ryu, E. (2008), “Simultaneous Confidence Intervals for Comparing Binomial Parameters,” Biometrics, 64, 1270-1275. 2. Boiteux, L. S., Hyman, J. R., Bach, I. C., Fonseca, M. E. N., Matthews, W. C., Roberts, P. A., and Simon, P. W. (2004), “Employment of Flanking Codominant STS Markers to Estimate Allelic Substitution Effects of a Nematode Resistance Locus in Carrot,” Euphytica, 136, 37-44. 3. Dilba, G ., Bretz, F., and Guiard, V. (2006), “Simultaneous Confidence Sets and Confidence Intervals for Multiple Ratios,” Journal of Statistical Planning and Inference, 136, 2640-2658. 4. Fieller, E. (1954), “Some Problems in Interval Estimation,” Journal of the Royal Statistical Society—Series B, 16, 175-185. 5. Genz, A., and Bretz, F. (2002), “Comparison of Methods for the Computation of Multivariate t Probabilities,” Journal of Computational and Graphical Statistics, 11, 950-971. 6. Jhun, M., and Jeong, H. C. (2000), “Applications of Bootstrap Methods for Categorical Data Analysis,” Computational Statistics and Data Analysis, 35, 83-91. 7. Kearsey, M., and Pooni, H. S. (1996), “The Genetical Analysis of Quantitative Traits,” London: Chapman and Hall. 8. Li, C. R., Liao, C. T., and Liu, J. P. (2008), “On the Exact Interval Estimation for the Difference in Paired Areas under the ROC Curves,” Statistics in Medicine, 27, 224-242. 9. Li, X. M. (2009), “A Generalized p-Value Approach for Comparing the Means of Several Log-normal Populations,” Statistics and Probability Letters, 79, 1404-1408. 10. Liao, C. T., Lin, T. Y., and Iyer, H. K. (2005), “One- and Two-Sided Tolerance Intervals for General Balanced Mixed Models and Unbalanced One-way Random Effects Models,” Technometrics, 47, 323-335. 11. Lin, T. Y., and Liao, C. T. (2006), “A ? -Expectation Tolerance Interval for General Balanced Mixed Linear Models,” Computational Statistics and Data Analysis, 50, 911-925. 12. Lin, T. Y., and Liao, C. T. (2008), “Prediction Intervals for General Balanced Linear Random Models,” Journal of Statistical Planning and Inference, 138, 3164-3175. 13. Malley, J. D. (1982), “Simultaneous Confidence Intervals for Ratios of Normal Means,” Journal of American Statistical Association, 77, 170-176. 14. Mandel, M., and Betensky, R. A. (2008), “Simultaneous Confidence Intervals Based on the Percentile Bootstrap Approach,” Computational Statistics and Data Analysis, 52, 2158-2165. 15. Nolan, D., and Speed, T. (2000), “Mathematical Statistics through Applications,” Berlin: Springer. 16. Pearn, W. L., Yang, D. Y., and Cheng, Y. C. (2009), “An Improved Approach for Estimating Product Performance Based on the Capability Index pmk C ,” Communications in Statistics-Simulation and Computation, 38, 2073-2095. 17. Piepho, H. P., and Emrich, K. (2005), “Simultaneous Confidence Intervals for Two Estimable Functions and Their Ratio under a Linear Model,” The American Statistician, 59, 292-300. 18. Pigeot, I., Schafer, J., Rohmel, J., and Hauschke, D. (2003), “Assessing Non-inferiority of a New Treatment in a Three-arm Clinical Trial Including a Placebo,” Statistics in Medicine, 22, 883-899. 19. Scheff’e, H. (1970), “Multiple Testing Versus Multiple Estimation, Improper Confidence Sets, Estimation of Directions and Ratios,” The Annals of Mathematical Statistics, 41, 1-29. 20. Tsui, K. W., and Weerahandi, S. (1989), “Generalized p-Values in Significance Testing of Hypotheses in the Presence of Nuisance Parameters,” Journal of American Statistical Association, 84, 602-607. 21. Weerahandi, S. (1993), “Generalized Confidence Intervals,” Journal of American Statistical Association, 88, 899-905. 22. Weerahandi, S. (1995), “Exact Statistical Methods for Data Analysis,” New York: Springer. 23. Wu, C. W., and Huang, P. H. (2010), “Generalized Confidence Intervals for Comparing the Capability of Two Processes,” Communications in Statistics-Theory Methods, 39, 2351-2364. 24. Young, D. A., Zerbe, G. O., and Hay, W. W. Jr (1997), “Fieller’s Theorem, Scheff’e Simultaneous Confidence Intervals, and Ratios of Parameters of Linear and Nonlinear Mixed-Effects Models,” Biometrics, 53, 838-847. 25. Zerbe, G. O. (1978), “On Fieller’s Theorem and the General Linear Model,” The American Statistician, 32, 103-105. 26. Zerbe, G. O., Laska, E., Meisner, M., and Kushner, H. B. (1982), “On Multivariate Confidence Regions and Simultaneous Confidence Limits for Ratios,” Communications in Statistics, Part A—Theory and Methods, 11, 2401-2425.
|