跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 04:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:柯金谷
研究生(外文):Ke Chin-Ku
論文名稱:具有非均勻及非靜態流量之多服務細胞網路之動態優先權化連結允入控制
論文名稱(外文):Dynamic Prioritized Call Admission Control in Multiservice Wireless Networks with Nonuniform and Nonstationary Traffic
指導教授:鍾順平
指導教授(外文):Chung Shun-Ping
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:136
中文關鍵詞:連結允入控制保護通道服務品質
外文關鍵詞:call admission controlguard channelquality of service
相關次數:
  • 被引用被引用:1
  • 點閱點閱:252
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於通訊需求的多樣化,下一代無線網路預期將支援極多種服務,例如語音、數據、與視訊。如眾所知,不同之服務可能具有極為不同之特徵。舉例而言,數據之連結服務時間通常遠大於語音之連結服務時間。具有較長連結服務時間之連結在其服務時間中平均而言會導致較多的交遞請求。頻繁之交遞請求可能對於服務品質造成重大影響。在無線網路中,連結允入控制是提供服務品質保證的一個關鍵要素。一般相對於新連結的阻塞,通話中的交遞連結所造成的中斷是更令人無法接受的。所以相對於新連結,我們為交遞請求預留資源使其有較高的進接優先權。我們提出一種動態優先權化連結允入控制方法,以提供動態適應型優先權化的連結允入。此方法會在每個細胞中根據其鄰近細胞目前進行連結的數目與移動圖樣所估算的交遞連結抵達率,來調整保護通道的數目,以維持交遞阻塞機率在目標值以內,並使新連結阻塞機率之惡化減到最低。為了讓系統模型趨近於真實的環境,我們採用一個具有許多不同但有限數目細胞的多細胞組態,以及假設每個細胞間行動台之轉移機率可有所不同並取決於一天的時間。我們同時考慮靜態與非靜態負載狀況的效能評估。我們以C語言撰寫電腦模擬程式來求得感興趣之效能量度,並且藉由模擬來證明我們方法之效果。我們探討每種細胞與每個時段對系統效能所造成的影響。同時我們也將比較所提出的動態保護通道方法與靜態保護通道方法。結果顯示,總體而言,我們的方法能得到較好的效能量度。
Due to the diversity of communication needs, the next generation wireless network is expected to support a wide range of services, such as voice, data, and video. As is well known, different services may have very distinct characteristics. For example, the call holding time of data is usually much longer than that voice. One call with longer call holding time on average leads to more handoff requests during its lifetime. Frequent handoff requests may give a serious impact on quality of service (QoS). Call admission control (CAC) is one of the key elements to provide quality of service guarantee in wireless mobile networks. In general, compared to new call blockings, forced termination of ongoing calls due to handoff blocking is less tolerable. We give a higher access priority to handoff requests over new calls by reserving them resources. We propose a call admission control scheme to provide dynamic adaptive prioritized admission of different traffic classes. The scheme adapts the number of guard channels in each cell according to the estimate of the handoff call arrival rate computed from the number of ongoing calls in neighboring cells and the mobility pattern, in order to maintain the handoff failure probability at the target objective while minimizing the degradation to the new call blocking probability. In order to make the system model more realistic, we adopt a multi-cell configuration, where cells may have different mobility pattern and the number of cells is finite. We assume the transit probability of a mobile station from one cell to another cell depends on both the cell type and the time of day. We study both stationary and non-stationary scenarios. We write simulation program in C language to obtain performance measures of interest, and we demonstrate the effectiveness of our method by simulations. We study the effect of cell types and time intervals on performance measures. We also compare the proposed dynamic guard channel scheme and the static guard channel scheme. The results show that, overall speaking, our scheme results in better performance.
中文摘要 I
英文摘要 II
目錄 III
圖目錄 V
表目錄 XVII
第一章 緒論 1
第二章 系統模型 4
2.1 基本假設 4
2.1.1 新連結及交遞連結抵達速率 5
2.1.2 連結服務時間 5
2.1.3 停留時間 5
2.1.4 通道服務時間 5
2.2 多細胞模型 6
2.3 行動台的移動性……………………………………..7
2.4 連結允入控制 10
2.4.1 靜態保護通道方法…………………………….10
2.4.2 動態保護通道方法…………………………….11
2.4.2.1 多重保護通道........…………………..11
2.4.2.2 瞬間交遞連結抵達率之估測……………..12
2.4.2.3 阻塞機率近似演算法……………………..15
2.4.2.4 保護通道適應型控制……………………..20
第三章 模擬結果與分析…………………………………....24
3.1靜態流量模型 25
3.1.1單一服務之效能分析 25
3.1.1.1 全天時段…………………………………..25
3.1.1.2 早上通勤時段……………………………..27
3.1.1.3 尖峰時段…………………………………..27
3.1.1.4 下午通勤時段……………………………..28
3.1.2兩種服務之效能分析 28
3.1.2.1 全天時段…………………………………..29
3.1.2.2 早上通勤時段……………………………..31
3.1.2.3 尖峰時段…………………………………..32
3.1.2.4 下午通勤時段……………………………..33
3.2非靜態流量模型 34
3.2.1單一服務之效能分析 35
3.2.2兩種服務之效能分析 37
3.3總結分析 39
第四章 結論………………………………………………..124
參考文獻 126
附錄A 流程圖………………...…………………………..130
[1] T. S. Rappaport, Wireless Communications: Principles and Practice, Prentice Hall, 1996.
[2] D. C. Cox, “Wireless Network Access for Personal Communica- tions,” IEEE Communications Magazine, Vol. 30, No. 12, pp. 96-115, Dec. 1992.
[3] M. Cheng and L. F. Chang, “Wireless Dynamic Channel Assignment
Performance under Packet Data Traffic,” IEEE Journal on Selected
Areas in Communications, Vol. 17, No. 7, pp. 1257-1269, July 1999.
[4] D. Hong and S.S. Rappaport, “Traffic Model and Performance Analysis for Cellular Mobile Radio Telephone Systems with Prioritized and Nonprioritized Handoff Procedures,” IEEE Trans. on Veh. Technol., Vol. 3, pp. 77-92, Aug. 1986.
[5] C. H. Yoon and C. K. Un, “Performance of Personal Portable Radio Telephone Systems with and without Guard Channels,” IEEE J. Select. Areas Commun., Vol. 11, pp. 911-917, Aug. 1993.
[6] O. T. W. Yu and V. C. M. Leung, “Adaptive Resource Allocation for Prioritized Call Admission over an ATM-based Wireless PCN,” IEEE J. Select. Areas Commun., Vol. 15, pp. 1208-1224, Sept. 1997.
[7] P. Ramanathan, K. M. Sivalingam, P. Agrawal and S. Kishore, “Dynamic Resource Allocation Schemes During Handoff for Mobile Multimedia Wireless Networks,” IEEE J. Select. Areas Commun., Vol. 17, pp. 1270-1283, July 1999.
[8] O. Yu and S. Khanvilkar, “Dynamic Adaptive QoS Provisioning over GPRS Wireless Mobile Links,” ICC 2002, Vol. 2, pp. 1100-1104, 2002.
[9] J. Hou and Y. Fang, “Mobility-Based Channel Reservation Scheme for Wireless Mobile Networks,” Proc. IEEE Wireless Communications and Networking Conference, Vol. 2, pp. 527-531, Sept. 2000.
[10] M.D. Kulavaratharasah and A.H. Aghvami, “Teletraffic Performance Evaluation of Microcellular Personal Communication Networks (PCN’s) with Prioritized Handoff Procedures,” IEEE Trans. Vehicular Technology, Vol. 48, pp. 137-152, Jan. 1999.
[11] S. Tekinay and B. Jabbari, “A Measurement-Based Prioritization Scheme for Handovers in Mobile Cellular Networks,” IEEE J. Selected Areas in Comm., Vol. 10, No. 8, pp. 1343-1350, Oct. 1992.
[12] V.K.N. Lau and S.V. Maric, “Mobility of Queued Call Requests of a New Call Queuing Technique for Cellular Systems,” IEEE Trans. Vehicular Technology, Vol. 47, No. 2, pp. 480-488, May 1998.
[13] C.J. Chang, T.T. Su and Y.Y. Chiang, “Analysis of a Cutoff Priority Cellular Radio System with Finite Queueing and Reneging/ Dropping,” IEEE/ACM Trans. Networking, Vol. 2, No. 2, pp. 166-175, Apr. 1994.
[14] K.N. Chang, J.T. Kim, C.S. Yim and S. Kim, “An Efficient Borrowing Channel Assignment Scheme for Cellular Mobile Systems,” IEEE Trans. Vehicular Technology, Vol. 47, No. 2, pp. 602-608, May 1998.
[15] Yang Xiao, C. L. P. Chen and Y. Wang, “Quality of Service and Call Admission Control for Adaptive Multimedia Services in Wireless/ Mobile Networks,” NAECON 2000, pp. 214-220, 2000.
[16] Shengming Jiang, D. H. K. Tsang and Bo Li, “An Enhanced Distributed Call Admission Control for Wireless Systems,” ISCC ''98, pp. 695-699, 1998.
[17] Minhee Cho, Jae-Man Kim and Hyunsoo Yoon, “A New Call Admission Control Scheme Using the User Conformity for Non-uniform Wireless Systems,” Vehicular Technology Conference, Vol. 3, pp. 1339-1343, 2001.
[18] Y. Iraqi and R. Boutaba, “An Adaptive Distributed Call Admission Control for QoS-Sensitive Wireless Mobile Networks,” WCNC, Vol. 1, pp. 449-453, 2000.
[19] In-Soo Yoon and Byeong Gi Lee, “A Distributed Dynamic Call Admission that Supports Mobility of Wireless Multimedia Users,” ICC’99, Vol. 3, pp. 1442-1446, 1999.
[20] In-Soo Yoon and Byeong Gi Lee, “DDR:A Distributed Dynamic Reservation Scheme That Supports Mobility in Wireless Multimedia Communications,” IEEE J. Select. Areas Commun, Vol. 19, No. 11, pp. 2243-2253, Nov. 2001.
[21] S. Biswas and B. Sengupta, “Call Admissibility for Multirate Traffic in Wireless ATM Networks,” INFOCOM’97, pp. 649-657, Apr. 1997.
[22] D. P. Agrawal and Qing-An Zeng, Introduction to Wireless and Mobile System, 2003.
[23] W. C. Y. Lee, “Smaller Cells for Greater Performance,” IEEE Commun. Mag., Vol. 29, No. 11, pp. 19-23, Nov. 1991.
[24] E. Chlebus, “Nonstationary Traffic Models for Mobile Satellite Communications Systems,” PIMRC''96, Vol. 2, pp. 442-446, Oct. 1996.
[25] N. Mir, “Analysis of Nonuniform Traffic in a Switching Network,” ICCCN’98, pp. 668-672, Oct. 1998.
[26] Seungjae Bahng, Insoo Koo, Jeongrok Yang and Kiseon Kim, “Flexible Call Admission Control Schemes for DS-CDMA Systems with Non-uniform Traffics,” TENCON 99, Vol. 1, pp. 31-34, Sept. 1999.
[27] W. Jolley and R. Warfield, “Modeling and Analysis of Layered Cellular Mobile Networks,” Proc. ITC-13, pp. 161-166, 1991.
[28] Yi-Bing Lin and Victor W. Mak, “Eliminating the Boundary Effect of a Large-Scale Personal Communication Service Network Simula- tion,” ACM Transactions on Modeling and Computer Simulation, Vo1. 4, No. 2, pp. 165-190, April 1994.
[29] B. Jabbari, “Teletraffic Aspects of Evolving and Next-Generation Wireless Communication Networks,” IEEE Personal Comm., Vol. 3, No. 6, pp. 4-9, 1996.
[30] A. Gersht and K. J. Lee, “Virtual-Circuit Load Control in Fast Packet-Switched Broadband Networks,” Globecom’88, pp. 7.3.1- 7.3.7.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top