|
[1]J.Bryan, International status of thermal error research(1990), Annals of the CIRP, 1990. [2]J. Zhang, P. Feng, C. Chen, D. Yu, and Z. Wu, A method for thermal performance modeling and simulation of machine tools, Int J Adv Manuf Technol, vol. 68, pp. 1517-1527, 2013. [3]E. Creighton, A. Honegger, A. Tulsian, and D. Mukhopadhyay, Analysis of thermal errors in a high-speed micro-milling spindle, International Journal of Machine Tools & Manufacture, vol. 50, pp. 386-393, 2010. [4]P. Vanherck, J. Dehaes, and M. Nuttin, Compensation of thermal deformations in machine tools with neural nets, Computers in Industry, vol. 33, pp. 119-125, 1997. [5]A. M. Abdulshahed, A. P. Longstaff, S. Fletcher, and A. Potdar, Thermal error modelling of a gantry-type 5-axis machine tool using a Grey Neural Network Model, Journal of Manufacturing Systems, vol. 41, pp. 130-142, 2016. [6]J. Mayr, J. Jedrzejewski, E. Uhlmann, M. A. Donmez, W. Knapp, F. Hartig, et al., Thermal issues in machine tools, CIRP Annals - Manufacturing Technology, vol. 61, pp. 771-791, 2012. [7]J.-J. Kim, Y. H. Jeong, and D.-W. C. , Thermal behavior of a machine tool equipped with linear motors, International Journal of Machine Tools & Manufacture, vol. 44, pp. 749-758, 2004. [8]V.-T. Than and J. H. Huang, Nonlinear thermal effects on high-speed spindle bearings subjected to preload, Tribology International, vol. 96, pp. 361-372, 2016. [9]N. S. Mian, S. Fletcher, A. P. Longstaff, and A. Myers, Efficient estimation by FEA of machine tool distortion due to environmental temperature perturbations, Precision Engineering, vol. 37, pp. 372-379, 2013. [10]H. Shi, C. Ma, J. Yang, L. Zhao, X. Mei, and G. Gong, Investigation into effect of thermal expansion on thermally induced error of ball screw feed drive system of precision machine tools, International Journal of Machine Tools and Manufacture, vol. 97, pp. 60-71, 2015. [11]Z. Haitao, Y. Jianguo, and S. Jinhua, Simulation of thermal behavior of a CNC machine tool spindle, International Journal of Machine Tools and Manufacture, vol. 47, pp. 1003-1010, 2007. [12]B. Tan, X. Mao, H. Liu, B. Li, S. He, F. Peng, et al., A thermal error model for large machine tools that considers environmental thermal hysteresis effects, International Journal of Machine Tools and Manufacture, vol. 82-83, pp. 11-20, 2014. [13]M. Gebhardt, M. Ess, S. Weikert, W. Knapp, and K. Wegener, Phenomenological compensation of thermally caused position and orientation errors of rotary axes, Journal of Manufacturing Processes, vol. 15, pp. 452-459, 2013. [14]M. Gebhardt, J. Mayr, N. Furrer, T. Widmer, S. Weikert, and W. Knapp, High precision grey-box model for compensation of thermal errors on five-axis machines, CIRP Annals - Manufacturing Technology, vol. 63, pp. 509-512, 2014. [15]J. Mayr, M. Egeter, S. Weikert, and K. Wegener, Thermal error compensation of rotary axes and main spindles using cooling power as input parameter, Journal of Manufacturing Systems, vol. 37, pp. 542-549, 2015. [16]P. Blaser, F. Pavliček, K. Mori, J. Mayr, S. Weikert, and K. Wegener, Adaptive learning control for thermal error compensation of 5-axis machine tools, Journal of Manufacturing Systems, vol. 44, pp. 302-309, 2017. [17]E. Bitar-Nehme and J. R. R. Mayer, Modelling and compensation of dominant thermally induced geometric errors using rotary axes’ power consumption, CIRP Annals, 2018. [18]M. Zbiec, Application of Neural Network in Simple Tool Wear Monitoring and Identification System in MDF Milling, Drvna Industrija, vol. 62(1), pp. 43-54, 2011. [19]J.Yang, H.Shi, B.Feng, C.Ma, and X.Mei, Applying neural network based on fuzzy cluster pre-processing to thermal error modeling for coordinate boring machine Procedia CIRP vol. 17, pp. 698-703, 2014. [20]S. Eskandari, B. Arezoo, and A. Abdullah, Positional, geometrical, and thermal errors compensation by tool path modification using three methods of regression, neural networks, and fuzzy logic, Int J Adv Manuf Technol, vol. 65, pp. 1635-1649, 2013. [21]J. S. Chen, J. Yuan, and J. Ni, Thermal Error Modelling for Real-Time Error Compensation, Int J Adv Manuf Technol, vol. 12, pp. 266-275, 1996. [22]N. Harsha, I. A. Kumar, K. S. R. Raju, and S. Rajesh, Prediction of Machinability characteristics of Ti6Al4V alloy using Neural Networks and Neuro-Fuzzy techniques, Materials Today: Proceedings, vol. 5, pp. 8454-8463, 2018. [23]S.-L. Chen and Y. W. Jen, Data fusion neural network for tool condition monitoring in CNC milling machining, International Journal of Machine Tools & Manufacture, vol. 40, pp. 381-400, 2000. [24]R. L. Malghan, K. R. M. C, A. K. Shettigar, S. S. Rao, and R. J. D’Souza, Forward and reverse mapping for milling process using artificial neural networks, Data in Brief, vol. 16, pp. 114-121, 2018. [25]ANSYS, ANSYS Fluent Theory Guide, 2013. [26]Harris and T. A, Rolling Bearing Analysis, 2001. [27]陳美惠, 車銑複合機主軸頭熱平衡優化設計分析與實機驗證, 機械工程學系研究所, 國立中興大學, 2017. [28]F. P. INCROPERA, D. P. DEWITT, T. L. BERGMAN, and A. S. LAVINE, Fundamentals of heat and mass transfer: John Wiley & Sons, 2005. [29]W. S. Mcculloch and W. Pitts, a logical calculus of the ideas immanent in nervous activity, bulletin of mathematical biophysics, vol. 5, p. 19, 1943. [30]J. Kennedy and R. Eberhart, Partical Swarm Optimization, Neural Networks, 1995. Proceedings.,IEEE International Conference, pp. 1942-1948, 1995.
|