跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 18:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:高一峰
研究生(外文):E-Fong Kao
論文名稱:胸部X光影像之電腦輔助診斷系統
論文名稱(外文):Computer-Aided Diagnosis in Chest Radiographs
指導教授:李宗南李宗南引用關係
指導教授(外文):Chungnan Lee
學位類別:博士
校院名稱:國立中山大學
系所名稱:資訊工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:88
中文關鍵詞:投影曲線胸部X光影像電腦輔助診斷
外文關鍵詞:computer-aided diagnosisprojection profilechest radiograph
相關次數:
  • 被引用被引用:0
  • 點閱點閱:648
  • 評分評分:
  • 下載下載:70
  • 收藏至我的研究室書目清單書目收藏:0
近年來由於電腦科技的快速發展,醫學上診斷疾病的方式也隨之改變,醫學影像傳輸系統 (Picture Archiving and Communication System) 便是最好的實例,它改變了醫學影像的診斷方式,由以往的傳統X光片而改為直接於電腦螢目上做診斷,於此技術的應用下,所有型態的醫學影像都朝向數位化發展,此也提供了利用電腦技術來輔助醫師做疾病診斷的機會。在本論文中,我們提出一種胸部X光影像之異常自動篩檢的方法,其內容包含四個部分:第一部分為前置處理的程序,其目的在於區分胸部X光影像之正位和側位像,以利於後續的分析;第二部分為本方法最主要的程序,其針對胸部X光影像之大面積異常進行偵測;第三部分針對如何降低計算上所需的時間做進一步的探討;第四部分則將上述之方法實作成一系統並於臨床上進行測試。本論文的主要方法是藉由分析胸部X光影像之投影曲線來達到異常偵測的目的,而各方法的鑑別效能則是利用Receiver Operating Characteristic Analysis之方法來分析。結果中顯示,我們所提出的方法達到一定程度的鑑別效能,於未來發展上具有臨床實用的潛力。
As computer technologies are developed rapidly in recent years, the ways to diagnose diseases also alter in clinical practice. Picture Archiving and Communication System (PACS) is an example that makes the diagnostic way for medical images change from view box to monitor. All types of medical images tend to be digitized and this makes it practical for helping doctor diagnose medical images via computer technologies. In this thesis, we propose a systemic approach to screen abnormalities in chest radiographs. First, a preprocess step identifying the view of chest radiographs is introduced. Second, a method is proposed for automated detection of gross abnormal opacity in chest radiographs. Third, computation time reduction is performed by subsampling. Finally, a computer-aided diagnosis system is implemented and evaluated in a clinical environment. Major technique used in this thesis is to analyze the projection profile obtained by projecting a chest image on to the mediolateral axis. The discriminant performance for each method is evaluated by using receiver operating characteristic (ROC) analysis. The results indicate that the proposed methods are potentially useful for screening abnormalities in chest radiographs.
Abstract..................................................1
1. Introduction...........................................3
1.1 Overview of Computerized Analysis for Chest Radiographs..........3
1.2 Outline of this Thesis..............................11
2. Identification of the View of Chest Radiographs.......13
2.1 Objectives..........................................13
2.2 Materials...........................................15
2.3 Method..............................................16
2.4 Results.............................................22
2.5 Discussion..........................................24
3. Detection of Gross Abnormal Opacity...................27
3.1 Objectives..........................................27
3.2 Materials...........................................28
3.3 Method..............................................30
3.4 Results.............................................39
3.5 Discussion..........................................43
4. Computation Time Reduction............................45
4.1 Objectives..........................................45
4.2 Method..............................................46
4.3 Results.............................................47
4.4 Discussion..........................................51
5. Evaluation in a Clinical Environment..................53
5.1 Objectives..........................................53
5.2 Materials and Methods...............................55
5.3 Results.............................................62
5.4 Discussion..........................................67
6. Conclusions...........................................72
References...............................................75
[1] H. K. Huang, PACS: Basic Principles and Applications (Wiley-Liss, New York, 1998).
[2] M. L. Giger, N. Karssemeijer, and S. G. Armato III, “Computer-aided diagnosis in medical imaging,” IEEE Trans. Med. Imaging 20, 1205-1208 (2001).
[3] B. V. Ginneken, B. T. H. Romeny, and M. A. Viergever, “Computer-aided diagnosis in chest radiography: A survey,” IEEE Trans. Med. Imaging 20, 1228-1241 (2001).
[4] H. MacMahon, S. M. Montner, K. Doi, and K. J. M. Liu, “The nature and subtlety of abnormal findings in chest radiographs,” Med. Phys. 18, 206-210 (1991).
[5] M. L. Giger, K. Doi, and H. MacMahon, “Image feature analysis and computer-aided diagnosis in digital radiography. 3. Automated detection of nodules in peripheral lung fields,” Med. Phys. 15, 158-166 (1988).
[6] M. L. Giger, N. Ahn, K. Doi, H. MacMahon, and C. E. Metz, “Computerized detection of pulmonary nodules in digital chest images: Use of morphological filters in reducing false-positive detections,” Med. Phys. 17, 861-865 (1990).
[7] S. B. Lo, S. A. Lou, J. Lin, M. T. Freedman, M. V. Chien, and S. K. Mun, “Artificial convolution neural network techniques and applications for lung nodule detection,” IEEE Trans. Med. Imaging 14, 711-718 (1995).
[8] X. W. Xu, K. Doi, T. Kobayashi, H. MacMahon, and M. L. Giger, “Development of an improved CAD scheme for automated detection of lung nodules in digital chest images,” Med. Phys. 24, 1395-1403 (1997).
[9] M. J. Carreira, D. Cabello, M. G. Penedo, and A. Mosquera “Computer-aided diagnoses: Automatic detection of lung nodules,” Med. Phys. 25, 1998-2006 (1998).
[10] Q. Li, S. Katsuragawa, and K. Doi, “Computer-aided diagnostic scheme for lung nodule detection in digital chest radiographs by use of a multiple-template matching technique,” Med. Phys. 28, 2070-2076 (2001).
[11] G. Coppini, S. Diciotti, M. Falchini, N. Villari, and G. Valli, “Neural networks for computer-aided diagnosis: Detection of lung nodules in chest radiograms,” IEEE Trans. Med. Imaging 7, 344-357 (2003).
[12] M. Aoyama, Q. Li, S. Katsuragawa, H. MacMahon and K. Doi, “Automated computerized scheme for distinction between benign and malignant solitary pulmonary nodules on chest images,” Med. Phys. 29, 701-708 (2002).
[13] S. Katsuragawa, K. Doi, and H. MacMahon, “Image feature analysis and computer-aided diagnosis in digital radiography: Detection and characterization of interstitial lung disease in digital chest radiographs,” Med. Phys. 15, 311-319 (1988).
[14] S. Katsuragawa, K. Doi, and H. MacMahon, “Image feature analysis and computer-aided diagnosis in digital radiography: Classification of normal and abnormal lungs with interstitial disease in chest images,” Med. Phys. 16, 38-44 (1989).
[15] T. Ishida, S. Katsuragawa, T. Kobayashi, H. MacMahon, and K. Doi, “Computerized analysis of interstitial disease in chest radiographs: Improvement of geometric-pattern feature analysis,” Med. Phys. 24, 915-924 (1997).
[16] S. Sanada, K. Doi, and H. MacMahon, “Image feature analysis and computer-aided diagnosis in digital radiography: Automated detection of pneumothorax in chest images,” Med. Phys. 19, 1153-1160 (1992).
[17] F. M. Carrascal, J. M. Carreira, M. Souto, P. G. Tahoces, L. Gomez, and J. J. Vidal, “Automatic calculation of total lung capacity from automatically traced lung boundaries in postero-anterior and lateral digital chest radiographs,” Med. Phys. 25, 1118-1131 (1998).
[18] N. Nakamori, K. Doi, V. Sabeti, and H. MacMahon, “Image feature analysis and computer-aided diagnosis in digital radiography: Automated analysis of sizes of heart and lung in chest images,” Med. Phys. 17, 342-350 (1990).
[19] S. G. Armato III, M. L. Giger, and H. MacMahon, “Computerized detection of abnormal asymmetry in digital chest radiographs,” Med. Phys. 21, 1761-1768 (1994).
[20] B. V. Ginneken, S. Katsuragawa, B. T. H. Romeny, K. Doi, and M. A. Viergever, “Automatic detection of abnormalities in chest radiographs using local texture analysis,” IEEE Trans. Med. Imaging 21, 139-149 (2002).
[21] E. Pietka and H. K. Huang, “Orientation correction for chest images,” J. Digital Imag. 5, 280-291 (1992).
[22] H. Arimura, S. Katsuragawa, Q. Li, T. Ishida, and K. Doi, “Development of a computerized method for identifying the posteroanterior and lateral views of chest radiographs by use of a template matching technique,” Med. Phys. 29, 1556-1561 (2002).
[23] T. M. Lehmann, O. Güld, D. Keysers, H. Schubert, M. Kohnen, and B. B. Wein, “Determining the view of chest radiographs,” J. Digital Imag. 16, 280-291 (2003).
[24] J. M. Boone, G. S. Hurlock, J. A. Seibert, and R. L. Kennedy, “Automated recognition of lateral from PA chest radiographs: Saving seconds in a PACS environment,” J. Digital Imag. 16, 345-349 (2003).
[25] H. P. Chan, B. Sahiner, K. L. Lam, N. Petrick, M. A. Helvie, M. M. Goodsitt, and D. D. Adler, “Computerized analysis of mammographic microcalcifications in morphological and texture feature spaces,” Med. Phys. 25, 2007-2019 (1998).
[26] J. A. Hanley and B. J. McNeil, “The meaning and use of the area under a receiver operating characteristic (ROC) curve,” Radiology 143, 29-36 (1982).
[27] Q. Li, S. Katsuragawa, T. Ishida, H. Yoshida, S. Tsukuda, H. MacMahon, and K. Doi, “Contralateral subtraction: A novel technique for detection of asymmetric abnormalities on digital chest radiographs,” Med. Phys. 27, 47-55 (2000).
[28] A. Silberschatz, P. Galvin, and G. Gagne, Operating System Concepts, (John Wiley & Sons, 2003), pp. 151-153.
[29] L. Lepanto, G. Pare, D. Aubry, and P. Robillard, “Impact of PACS on dictation turnaround time and productivity,” J. Digital Imag. 19, 92-97 (2006).
[30] H. MacMahon, R. Engelmann, F. M. Behlen, K. R. Hoffmann, T. Ishida, C. Roe, C. E. Metz, and K. Doi, “Computer-aided diagnosis of pulmonary nodules: Results of a large-scale observer test,” Radiology 213, 723-726 (1999).
[31] S. Kakeda , J. Moriya, H. Sato, T. Aoki, H. Watanabe, H. Nakata, N. Oda, S. Katsuragawa, K. Yamamoto, and K. Doi, “Improved detection of lung nodules with aid of computerized detection method: Evaluation of a commercial computer-aided diagnosis system,” Am. J. Roentgenol. 182, 505-510 (2004).
[32] T. Johkoh, T. Kozuka, N. Tomiyama, S. Hamada, O. Honda, N. Mihara, M. Koyama, M. Tsubamoto, M. Maeda, H. Nakamura, H. Saki, and K. Fujiwara, “Temporal subtraction for detection of solitary pulmonary nodules on chest radiographs: Evaluation of a commercially available computer-aided diagnosis system,” Radiology 223, 806-811 (2002).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 單文經,涂靜如(1992)。國小「有效的常規管理者」之特質。教育研究資訊,1(3),76-93。
2. 黃淑真(1995)。介入、非介入與社會互動法在班級管理的運用。教育實習輔導,4(1),60-64。
3. 張秀敏(1995)。國小一、三、五年級優良教師班級常規之建立與維持之比較研究。屏東師院學報,8,1─42。
4. 簡紅珠(1997)。在新世紀的學校教育脈絡中建構良性互動與有效學習的班級環境。國教世紀,178,13-16。
5. 潘志煌(1998)。師生教學互動中的性別差異─國小班級多重個案研究。新竹師院國民教育研究所論文集,3,201-224。
6. 蔡東鐘(1999)。符號互動論在教育上的應用之探討。國教之聲。32(4),33─45
7. 湯梅英(1996)。教師專業社會化之探討-學習與成長的歷程。臺北市立師範學院學報。27,1-16
8. 游淑燕(1993)。專家與生手教學表現之比較研究及其對師範教教育課程與教學的啟示。嘉義師院學報,7,207─242
9. 孫仲山(1996)。師生互動的教學理論。高市文教,57,38-41
10. 孫敏芝(1995)。國民小學教師對班級常規觀點之質化研究。屏東師院學報,8,43-70
11. 高強華(1997)。迎接教學生涯的新挑戰-教師專業成長面面觀。北縣教育 。16,23-28
12. 吳耀明(2000)。國小教師班級經營與兒童生活適應關係之研究。教育研究資訊,8(3),114─144
13. 吳明隆(2001)。班級經營中學生不當行為內涵的探究與因應。諮商與輔導,186,5-10。
14. 吳明隆(1998)。制亂、治亂有方─教室經營中學生不當行為內涵的探究。班級經營,3(4),13-21
15. 朱文雄(1990)。教室不當行為管理方法─從鉅觀到微觀。國教天地,90,9-16。