跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 11:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:駱玠錞
研究生(外文):Jie-Chun Luo
論文名稱:高靈敏光激發奈米結構與常壓噴射式電漿處理之氧化鋅常溫氣體感測器
論文名稱(外文):High Sensitivity Photo-activated Nanostructure and Atmospheric Pressure Plasma Jet Treated Zinc Oxide Gas Sensor at Room Temperature
指導教授:田維誠
指導教授(外文):Wei-Cheng Tian
口試委員:陳建彰陳奕君呂家榮
口試委員(外文):Jian-Zhang ChenI-Chun ChengChia-Jung Lu
口試日期:2015-06-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:73
中文關鍵詞:氣體感測器紫外光常溫氧化鋅奈米結構常壓噴射式電漿
外文關鍵詞:gas sensorUVroom temperatureZnOnanostructureatmospheric pressure plasma jet treatment
相關次數:
  • 被引用被引用:2
  • 點閱點閱:227
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
揮發性有機化合物(Volatile organic compounds, VOCs)在環境檢測一直是十分重要的角色,過量的VOCs可能對人體造成如抑制中樞神經系統、致癌等危害,在特定的濃度內,更可能發生氣爆等不可忽視的問題。也因此,世界各國對VOCs都有嚴格的規範,其中由於甲苯被廣泛存在於顏料、汽油等,量測甲苯又是另一項重要的議題。
傳統的以金屬氧化物為感測材料的氣體感測器在應用上,通常會再另外設計一層加熱器,藉由加熱至極高溫來增加氣體感測器的靈敏度。雖然可增加VOCs的吸附、脫附效率,但在製程上不僅需要另外設計一道光罩,且由於長時間加溫的影響,與目前主流的CMOS-based電路整合上會更為困難且增加製程成本,也不利於應用在可能氣爆的環境中。綜上所述,本研究致力於開發一移除加熱器並同時具備高靈敏度的常溫型量測氣體感測器。
本研究主題有二,一為開發一高靈敏之氣體感測器。我們使用微機電(Microelectromechanical Systems, MEMs)製程開發一平面指叉狀電極,以濺鍍的方式鍍上氧化鋅薄膜,並以水熱法製備特殊的氧化鋅奈米結構。二為以常壓噴射式電漿(Atmospheric Pressure Plasma Jet, APPJ)處理我們濺鍍的氧化鋅薄膜,並和傳統的爐管退火處理過的氧化鋅薄膜氣體感測器做退火時間之等效比較。
在水熱法製備之氧化鋅奈米結構氣體感測器方面,我們得到了水熱法製備的最佳時間為5分鐘,形狀為珊瑚狀結構,靈敏度相較於薄膜感測器提升了將近10倍,對於100-5000 ppm的甲苯有良好的線性度,量測極限為50 ppm,線性範圍內的靈敏度為26.04 ppm/ppm,上升時間約10.17秒,回復時間約5.17秒。相較於無照光環境上,以2 μw/cm2強度的紫外光光源照射可提升靈敏度約17%。

在常壓噴射式電漿處理過後的氣體感測器上,我們固定甲苯在500-5000 ppm的範圍內,討論其退火時間跟溫度和傳統爐管退火時間和溫度之等效化,我們找出傳統爐管退火對100 nm厚的氧化鋅薄膜氣體感測器量測甲苯的最佳參數為退火200℃/3小時,靈敏度可達2.80 ppm/ppm,上升時間約3秒,回復時間約3.5秒,靈敏度相較於氧化鋅薄膜感測器提升了9.03%;常壓噴射式電漿退火對100 nm厚的氧化鋅薄膜氣體感測器量測甲苯的最佳參數為退火1分鐘,靈敏度可達2.71 ppm/ppm,上升時間約10秒,回復時間約5.75秒,靈敏度相較於氧化鋅薄膜感測器提升了5.68%。氣體感測器在200℃溫度下的傳統爐管退火3小時的結果和常壓噴射式電漿處理1分鐘的結果相當接近。


Volatile organic compounds (VOCs) monitoring is one of key indices for environmental monitoring. Long exposure of VOCs at a specific concentration could lead to nervous system suppressing, cancers, and potentially an explosion disaster. It is important nowadays that governance was used to regulate the VOCs emission.
Traditional gas sensors utilizing metal oxide as the sensing material were typically equipped with a heater. Although the sensitivity was increased by incorporating a heater, one more photo-mask and additional processing were required to define the heater. With the high temperature heating, it’s not desirable to integrate with CMOS-based circuits and use in explosive environment. In this work, we developed a semiconductor-based gas senor which can detect toluene with high sensitivity at room temperature.
Two main topics were conducted in this research work. The first topic is to develop a high sensitivity gas sensor using micro-electromechanical systems (MEMs) technologies. The seed sensing film was deposited by a sputter and nanostructures were fabricated by a hydrothermal method with a special Zinc-nitrate/HMTA ratio. The second topic is to develop an atmospheric pressure plasma Jet (APPJ) treated ZnO sensing film for thin film gas sensor at room temperature.
In our ZnO gas sensor using a hydrothermal method to form nanostructures, we found an optimized fabricating time of 5 minutes to provide the maximum sensitivity of the sensor, the nanostructures are coral-like shape. Comparing to a thin film gas sensor with 100nm thickness ZnO without surface treatment, the sensitivity increased approximately 10 times when using a nanostructured ZnO gas sensor. The linearity of our gas sensor for toluene is in the range of 100-5000 ppm, the detection limit is 50 ppm, the rising time is ~10.17 seconds and recovery time is ~5.17 seconds. Comparison with the sensor operated at dark condition, we found the photo-activated sensor with 2 μw/cm2 UV exposure can increase the sensitivity approximately 17%.
In APPJ treated gas sensors, we fixed the gas concentration in the range of 500-5000 ppm to compare the heating time and the heating temperature between APPJ and calcination approach. The best parameter for calcination is 200℃ for 3 hours, the resulted sensor rising time is ~3 seconds and recovery time is ~3.5 seconds. Comparison with gas sensors without annealing, gas sensors with annealing provided a better sensitivity of 2.80 ppm/ppm (~9.03% increase than ZnO thin film sensors). The best parameter for APPJ is 1 minute, the resulted sensor rising time is ~10 seconds and recovery time is ~5.75 seconds. Comparison with gas sensors without annealing, gas sensors using APPJ treatment provided a better sensitivity of 2.71 ppm/ppm ( ~5.68% increase than ZnO thin film sensors ). The sensor performance using calcining for 3hr at 200℃ is similar to the sensor performance with APPJ treatment for 1min.

口試委員會審定書 I
誌謝 II
中文摘要 III
ABSTRACT V
目錄 VII
圖目錄 X
表目錄 XIV
第1章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 氣體感測器研究文獻回顧 8
1.3.1 氣體感測器介紹 8
1.3.2 氧化鋅金屬氧化物氣體感測器相關文獻回顧 13
1.4 論文架構 19
第2章 基礎理論 21
2.1 金屬氧化物半導體 21
2.1.1 氧化鋅 21
2.2 氧化鋅薄膜製備 22
2.2.1 溶膠凝膠法 22
2.2.2 濺鍍法 22
2.3 水熱法製備氧化鋅奈米結構原理 24
2.4 常壓噴射式電漿原理 25
2.5 感測相關機制 26
2.5.1 氣體感測機制 26
2.5.2 紫外光激發氧化鋅機制 28
2.5.3 氣流對氧化鋅的影響 28
第3章 氣體感測器製作與量測方式 29
3.1 平面指叉狀電極製作 29
3.1.1 基板參數 31
3.1.2 電子束蒸鍍 31
3.1.3 黃光微影 32
3.1.4 金屬蝕刻 33
3.1.5 晶圓切割 34
3.2 感測材料製備 35
3.2.1 氧化鋅薄膜製備 35
3.2.1.1 爐管熱退火處理 36
3.2.1.2 常壓噴射式電漿處理 37
3.2.2 水熱法製備氧化鋅奈米結構 38
3.3 晶片封裝 39
3.4 量測方式 40
3.4.1 實驗儀器 40
3.4.2 揮發性有機氣體生成系統 41
3.4.2.1 揮發性有機氣體生成 42
3.4.2.2 LabVIEW訊號擷取 44
第4章 氣體感測器量測結果與討論 45
4.1 量測相關參數定義 45
4.2 氣流對氧化鋅氣體感測器之影響 47
4.3 氧化鋅氣體感測器對甲苯之反應 48
4.3.1 水熱法製備氧化鋅奈米結構氣體感測器對甲苯之反應 49
4.3.1.1 製備結構比較 50
4.3.1.2 紫外光激發氧化鋅奈米結構氣體感測器 52
4.3.1.3 感測靈敏度比較 54
4.3.1.4 量測極限 56
4.3.2 常壓噴射式電漿處理之氧化鋅薄膜氣體感測器對甲苯之反應 57
4.3.2.1 傳統退火處理最佳化 57
4.3.2.2 常壓噴射式電漿處理最佳化 60
第5章 結論與未來展望 63
5.1 結論 63
5.2 未來展望 64
附錄 65
參考資料 68


[1]我們的島。“石化驚爆-高雄氣爆特別報導”。財團法人公共電視文化事業基金會(2014)。取自http://ourisland.pts.org.tw/content/%E7%9F%B3%E5%8C%96%E9%A9%9A%E7%88%86-%E9%AB%98%E9%9B%84%E6%B0%A3%E7%88%86%E7%89%B9%E5%88%A5%E5%A0%B1%E5%B0%8E#sthash.t3ZeHQsC.PrTQFp0K.dpbs
[2]L.E.L. Gas. "Lower and Upper Explosive Limits for Flammable Gases and Vapors (LEL/UEL)." Matheson gas products (2013): 22
[3]空氣污染防制法。行政院環境保護署(2011)。
[4]P. Wolkoff, and G.D. Nielsen. "Organic compounds in indoor air—their relevance for perceived indoor air quality?." Atmospheric Environment35.26 (2001): 4407-4417.
[5]“VOC”。中央研究院(2015)。取自http://140.109.192.251/?i=3&mc=5&nID=1
[6]“甲苯(Toluene)”。行政院環境保護署(2014)。取自http://www.epa.gov.tw/ct.asp?xItem=8283&ctNode=31454&mp=epa
[7]H.X. Corseuila, C.S. Huntb, R.C.F.D Santosa, and P.J.J. Alvarezb. "The influence of the gasoline oxygenate ethanol on aerobic and anaerobic BTX biodegradation." Water Research 32.7 (1998): 2065-2072.
[8]“Occupational Exposure Limits.” (2015). Avaliable: https://www.osha.gov/SLTC/toluene/exposure_limits.html
[9]”96年度甲苯等五種職場危害因子容許標準建議值研定”。行政院勞工委員會勞工安全衛生研究所(2007)。取自http://laws.ilosh.gov.tw/Book/Report_Publish.aspx?PID=1136&UID=F1885
[10]“排放管道中揮發性有機化合物檢測方法-揮發性有機化合物採樣組裝/氣相層析質譜儀法”。行政院環境保護署環境檢驗所(1997)。取自http://www.niea.gov.tw/niea/AIR/A72170B.htm
[11]“空氣中總揮發性有機化合物檢測方法-不銹鋼採樣筒/火焰離子化偵測法”。行政院環境保護署環境檢驗所(2006)。取自http://www.niea.gov.tw/niea/AIR/A73210C.htm
[12]J. Chou. “Catalytic Combustible Gas Sensors.” Hazardous Gas Monitors: A Practical Guide to Selection, Operation, and Applications(1999): 37-45.
[13]X. Liu, S. Cheng, H Liu, S. Hu, D. Zhang, and H. Ning. "A survey on gas sensing technology." Sensors 12.7 (2012): 9635-9665.
[14]J. Chou. “Electrochemical sensors.” Hazardous Gas Monitors: A Practical Guide to Selection, Operation, and Applications(1999): 27-35.
[15]張宏維、周鈺禎、蔡顯仁、徐慧萍、施正雄。”表面聲波氣體感測器之研製與應用”。CHEMISTRY (The Chinese Chemical Society, Taipei) 65.4 (2007): 487-498.
[16]“ACOUSTIC WAVE SENSORS.” (2015). Avaliable: http://www.sengenuity.com/tech_ref/aws_webversion.pdf
[17]“Spectroscopy overview.” (2015). Avaliable: http://commons.wikimedia.org/wiki/File:Spectroscopy_overview.svg
[18]T. Seiyama, A. Kato, K. Fujiishi, and M. Nagatani. “A new detector for gaseous components using semiconductor thin film”Analytical Chemistry 34.11 (1962):1502-1503.
[19]K.S. Kim, W.H. Baek, J.M. Kim, T.S. Yoon, H.H. Lee, C.J. Kang, and Y.S. Kim. "A nanopore structured high performance toluene gas sensor made by nanoimprinting method." Sensors 10.1 (2010): 765-774.
[20]M. Hjiri, L.E. Mir, S.G. Leonardi, A. Pistone, L. Mavilia, and G. Neric. "Al-doped ZnO for highly sensitive CO gas sensors." Sensors and Actuators B: Chemical 196 (2014): 413-420.
[21]B. Sunandan, and J. Dutta. "Hydrothermal growth of ZnO nanostructures." Science and Technology of Advanced Materials 10.1 (2009): 013001.

[22]J.X. Wang, X.W. Sun, Y. Yang, H. Huang, Y.C. Lee, O.K. Tan, and L. Vayssieres. "Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications." Nanotechnology 17.19 (2006): 4995.
[23]Y. Chen, C.L. Zhu, and G. Xiao. "Reduced-temperature ethanol sensing characteristics of flower-like ZnO nanorods synthesized by a sonochemical method." Nanotechnology 17.18 (2006): 4537.
[24]C. Ge, C. Xie, M. Hu, Y. Gui, Z. Bai, and D. Zeng. "Structural characteristics and UV-light enhanced gas sensitivity of La-doped ZnO nanoparticles." Materials Science and Engineering: B 141.1 (2007): 43-48.
[25]D. Acharyya, and P. Bhattacharyya. "An efficient BTX sensor based on ZnO nanoflowers grown by CBD method." Solid-State Electronics 106 (2015): 18-26.
[26]B.L. Zhu, C.S. Xie, W.Y. Wang, K.J. Huang, and J.H. Hua. "Improvement in gas sensitivity of ZnO thick film to volatile organic compounds (VOCs) by adding TiO 2." Materials Letters 58.5 (2004): 624-629.
[27]X. Liang, G. Lu, T. Zhong, F. Liu, and B. Quan. "New type of ammonia/toluene sensor combining NASICON with a couple of oxide electrodes." Sensors and Actuators B: Chemical 150.1 (2010): 355-359.
[28]Z. Bai, C. Xie, S. Zhang, W. Xua, and J. Xua. "Microwave sintering of ZnO nanopowders and characterization for gas sensing." Materials Science and Engineering: B 176.2 (2011): 181-186.
[29]X. Song, D. Zhang, and M. Fan. "A novel toluene sensor based on ZnO–SnO 2 nanofiber web." Applied Surface Science 255.16 (2009): 7343-7347.
[30]J. Huang, H. Ren, P. Sun, C. Gua, Y. Sun, and J. Liu. "Facile synthesis of porous ZnO nanowires consisting of ordered nanocrystallites and their enhanced gas-sensing property." Sensors and Actuators B: Chemical 188 (2013): 249-256.
[31]張均豪。”以溶膠凝膠法製備氧化鋅奈米結構於半導體型氣體感測器之應用”。機電科技研究所。國立臺灣師範大學(2008)。
[32]Z.L Wang. "Zinc oxide nanostructures: growth, properties and applications." Journal of Physics: Condensed Matter 16.25 (2004): R829.
[33]A. Janotti, and C.G.V.D Walle. "Native point defects in ZnO."Physical Review B 76.16 (2007): 165202.
[34]賴彥傑。”以溶膠凝膠法製作氧化鋅摻鎂之光學性質分析”。應用物理學系碩士班。國立高雄大學(2010)。
[35]A. Tsukazaki, M. Kubota, A. Ohtomo, T. Onuma, K. Ohtani, H. Ohno, S.F. Chichibu, and M. Kawasaki. "Blue light-emitting diode based on ZnO." Japanese Journal of Applied Physics 44.5L (2005): L643.
[36]M.L. Zhang, F. Jin, M.L. Zheng, J. Liu, Z.S. Zhao, and X.M. Duan. "High efficiency solar cell based on ZnO nanowire array prepared by different growth methods." RSC Advances 4.21 (2014): 10462-10466.
[37]X.Y. Du, Y.Q. Fu, S.C. Tan, J.K. Luo, A.J. Flewitt, S. Maeng, S.H. Kim, Y.J. Choi, D.S. Lee, N.M. Park, J. Park and W.I. Milne. "ZnO film for application in surface acoustic wave device."Journal of Physics: Conference Series. Vol. 76. No. 1. IOP Publishing, 2007.
[38]J. Xu, Q. Pan, and Z. Tian. "Grain size control and gas sensing properties of ZnO gas sensor." Sensors and Actuators B: Chemical 66.1 (2000): 277-279.
[39]C. J. Brinker and G. W. Scherer, “Sol-Gel Science”, Acadmic Press 2(1990).
[40]“薄膜技術”。(2015)。取自http://beeway.over-blog.com/article-thin-film-www-tool-tool-com-56747557.html
[41]莊佑豪。”水溶液法製備氧化鋅薄膜及其光學特性研究”。材料工程研究所。大同大學(1999)。
[42]洪昭南、郭有斌。“電漿反應器與原理”, 化工技術 第9卷 第10期(2001): 156-176。
[43]“ATMOSPHERIC PLASMA.” (2015). Avaliable : http://www.plasma.de/en/plasmasystems/construction.html
[44]劉芳佐。“以水熱法製備之氧化鋅奈米桿之氣體感測特性”。化學工程系。國立台灣科技大學(1999)。
[45]X. Chu, T. Chen, W. Zhang, B. Zheng, and H. Shui. "Investigation on formaldehyde gas sensor with ZnO thick film prepared through microwave heating method." Sensors and Actuators B: Chemical 142.1 (2009): 49-54.
[46]P.P. Sahay. "Zinc oxide thin film gas sensor for detection of acetone." Journal of Materials Science 40.16 (2005): 4383-4385.
[47]J. Gong, Y. Li, X. Chai, Z. Hu, and Y. Deng . "UV-light-activated ZnO fibers for organic gas sensing at room temperature." The Journal of Physical Chemistry C 114.2 (2009): 1293-1298.
[48]B.P.J.D.L Costello, R.J. Ewen, N.M. Ratcliffe, and M. Richards . "Highly sensitive room temperature sensors based on the UV-LED activation of zinc oxide nanoparticles." Sensors and Actuators B: Chemical 134.2 (2008): 945-952.
[49]李易珊。”指叉電容式生物感測器”。電機工程學系。國立中央大學(2000)
[50]R. Bosco, J.V.D. Beucken, S. Leeuwenburgh, and J. Jansen. "Surface engineering for bone implants: a trend from passive to active surfaces." Coatings 2.3 (2012): 95-119.
[51]X. Wei, B. Man, C. Xue, C. Chen, and M. Liu. "Blue luminescent center and ultraviolet-emission dependence of ZnO films prepared by pulsed laser deposition." Japanese journal of applied physics 45.11R (2006): 8586.
[52]Z. Chen, and L. Gao. "A facile route to ZnO nanorod arrays using wet chemical method." Journal of Crystal growth 293.2 (2006): 522-527.
[53]張正義。”以奈米金單層膜保護團簇塗佈於堆疊式電極結構之揮發性有機化合物氣體感測器”。電子工程學研究所。國立台灣大學(2013)
[54]S. Joshi, M. Parmar, K. Rajanna. "A novel gas flow sensing application using piezoelectric ZnO thin films deposited on Phynox alloy."Sensors and Actuators A: Physical 187 (2012): 194-200.
[55]S. Bai, W. Wu, Y. Qin, N. Cui, D.J. Bayerl, and X. Wang. "High‐Performance Integrated ZnO Nanowire UV Sensors on Rigid and Flexible Substrates." Advanced Functional Materials 21.23 (2011): 4464-4469.
[56]G. Korotcenkov, and B.K. Cho. "Engineering approaches for the improvement of conductometric gas sensor parameters: Part 1. Improvement of sensor sensitivity and selectivity (short survey)." Sensors and Actuators B: Chemical188 (2013): 709-728.
[57]E. Dilonardo, M. Penza, M. Alvisi, C.D. Franco, L. Torsi, and N. Cioffi.“Controlled Electrochemical Functionalization of MOx Nanostructures by Au NPs for Gas Sensing Application.” MRS Spring Meeting & Exhibit(2015) TT4.04.
[58]“VOC去除設備”。台育企業有限公司(2015)。取自http://www.raceahead.com.tw/t_chinese/product/voc/html/voc1.htm
[59]“深入瞭解光觸媒技術”。舒活健康科技股份有限公司(2015)。取自http://www.vitallife.com.tw/?p=skill&g=1&id=3
[60]J. Gong, Y. Li, X. Chai, Z Hu, and Y. Deng. "UV-light-activated ZnO fibers for organic gas sensing at room temperature." The Journal of Physical Chemistry C 114.2 (2009): 1293-1298.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top