跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/14 02:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳涵葳
研究生(外文):Han-Wei Cheng
論文名稱:利用定域化表面電漿共振之光纖式感測器於人類乳突病毒之檢測
論文名稱(外文):Fiber-Optic based on the localized surface plasmon resonance for detecting Human Papillomavirus
指導教授:林昭任林昭任引用關係
指導教授(外文):Tsao-Jen Lin
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:110
中文關鍵詞:人類乳突病毒感測器
外文關鍵詞:snesorHuman Papillomavirus
相關次數:
  • 被引用被引用:0
  • 點閱點閱:875
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是應用定域化表面電漿共振結合光纖的生物感測器,用以檢測與子宮頸癌高度相關的四型人類乳突病毒(Human Papillomavirus,HPV)。實驗中所使用的DNA探針型式為長50 mer,3’端利用雜合原理合成為雙股,最上方接近5’端處設計為20 mer具有特異性的HPV DNA序列。由雜交訊號結果發現,固定HPV-11 DNA探針於光纖上的最佳含浸條件為:濃度200 nM、20 mM MgCl2 + 20 mM KCl溶液、含浸10小時。當42 ℃下,此修飾好HPV-11 DNA探針與HPV-11 PCR雜交,其相對訊號可下降3.8 %,偵測極限達0.0056 ng/ml。而其它HPV-6、HPV-16與HPV-18 之DNA探針與PCR雜交反應,其相對訊號分別下降4.78 %、4.81 %與5.13 %,偵測極限分別為0.0081 ng/ml、0.004 ng/ml與0.00165 ng/ml。在四型HPV探針之專一性方面,除了HPV-11探針對HPV-18之PCR的專一性較差,其餘均有不錯的專一性。在動力學參數估計上,計算出ka約為0.9278*106 M-1S-1,kd約為0.0001206 S-1,KA約為7.693*109 M-1,代表DNA探針與PCR產物之親合力佳。故本實驗使用雙股DNA探針可以成左瑰侅PV四型之相關核酸序列,且有不錯的反應及專一性。
A reflection-based localized surface plasmon resonance fiber optic sensor has been developed to detect the 6, 11, 16, and 18 genotypes of Human papillomavirus (HPV) associated with cervical cancer. The detecting probe combines with single strand DNA 50 mer and thiolated 20 mer and annealing up to 95 oC, leading to the double-stranded formation in the terminal and designing 5’ end 20 mer which has specificity DNA sequence. The optimal immobilizing conditions of HPV-11 on to the modified optical fiber are 200nM DNA, 20 mM MgCl2 + 20 mM KCl solution, and immersing 10 h. As hybridizing with HPV-11 PCR product at 42 oC, the relative intensity change of HPV-11 DNA probe-functionalized sensor was 3.8 % with a 0.0056 ng/ml limit of detection. The responses of HPV-6、-16 and -18 DNA probes to particular PCR products are 4.78 %、4.81 % and 5.13 %, and have the 0.0081 ng/ml、0.004 ng/ml and 0.00165 ng/ml limit of detection, respectively. The HPV-11 probe has the good specificity except the HPV-18 PCR product and other three types of HPV probes have good specificity. The kinetic parameters of HPV-6, ka, kd, and KA, are 9.278x105 M-1s-1, 1.206x10-4 s-1, and 7.693x109 M-1, respectively. The result shows that the four types of HPV double strand DNA probes have a good affinity and response with PCR product.
致謝
中文摘要
英文摘要
目錄
圖目錄
表目錄
符號說明
第一章 緒論
1.1概述
1.2各章節簡介
第二章 文獻回顧
2.1 子宮頸癌和Human Papillomavirus (HPV)之相關性
2.2 Human Papillomavirus簡介
2.3 各種檢測方法
2.3.1 傳統子宮抹片檢查(巴式塗片)
2.3.2 Southern blot hybridization ( DNA ) 南方式墨點法
2.3.3 Hybrid capture, Digene HC2 test
2.3.4 PCR,核酸放大技術
2.3.5 實驗室方法檢測HPV
2.4 生物感測器
2.4.1 以DNA片段做為生物辨識元
2.5 表面電漿共振(Surface Plasmon Resonance,SPR)
2.5.1 定域化表面電漿共振原理(Localized surface plasmon resonance)
2.5.2 表面增強拉曼散射
2.5.3 光纖式表面電漿共振感測器
2.6 實驗目的
第三章 實驗材料、設備與方法
3.1 實驗藥品及儀器設備
3.1.1 實驗藥品
3.1.2 實驗儀器
3.2 實驗流程與備製方法
3.2.1 HPV PCR產物檢測 (HPV-6、11、 16、 18)
3.2.1-1 HPV-11 PCR產物檢測之實驗流程
3.2.2 雙股DNA合成示意圖
3.2.3 穿透式光纖生物感測器裝置圖
3.2.4 DNA HPV檢測光纖之製備與HPV PCR (HPV-11、6、16、18 )產物之檢測
3.2.4-1 製備HPV的雙股DNA探針
3.2.4-2 金奈米HPV檢測光纖之備製
3.2.5 製備AFM表面分析樣品
3.2.6 金奈米光纖以TE buffer固定探針濃度之討論
3.2.7 金奈米光纖以MgCl2 solution固定探針濃度之討論
3.2.8 金奈米光纖以MgCl2 sloution固定探針時間之討論
3.2.9 金奈米光纖以不同離子濃度為固定液之固定DNA探針討論
3.2.10 HPV-11 DNA光纖以不同的雜交液雜合之效率討論
3.2.11 HPV-6、16、18型DNA金奈米光纖之較佳化條件之討論
3.3 金奈米光纖修飾四型HPV DNA探針之專一性討論
3.3.1 金奈米光纖修飾四型HPV DNA探針之單獨專一性之討論
3.4 DNA動力學推導
3.4.1實驗原理推

第四章 結果與討論
4.1 HPV-11 PCR產物之檢測
4.1.1 20 mer單股DNA(ssDNA)探針檢測HPV-11 PCR產物(約3000 base)之討論
4.1.2 20 mer單股DNA + 6 mer T鹼基探針檢測HPV PCR 產物 (約200 base)之討論
4.1.3 雙股DNA探針檢測HPV PCR產物(約200 base)之討論
4.2利用AFM分析表面形貌之改變
4.3 HPV-11型PCR產物之檢測
4.3.1 金奈米光纖以TE buffer浛浸雙股HPV-11 DNA探針之濃度討論
4.3.2 金奈米光纖以MgC12 + KCl sloution含浸雙股HPV-11 DNA探針之濃度討論
4.3.3金奈米光纖含浸HPV-11雙股DNA探針之固定化溶液中改變 Mg2+與KCl含量之討論
4.3.4 金奈米光纖含浸HPV-11雙股DNA探針之固定化時間討論
4.3.5 HPV-11型DNA光纖檢測PCR產物時改變雜交buffer之討論
4.3.6 HPV-11型DNA光纖檢測PCR產物時加入Tween 20之討論
4.3.7 備製HPV-11雙股DNA光纖較佳條件下檢測PCR產物
4.4 HPV-6型PCR產物之檢測
4.4.1 HPV-6 型DNA探針較佳修飾條件之探討
4.4.2改變固定DNA探針溶液中KCl含量於HPV-6型DNA探針
4.5 HPV-16型與HPV-18 PCR產物之檢測
4.6 比較四型HPV-6、11、16、18型較佳固定濃度之相關性
4.7 四型HPV DNA探針相互之專一性討論
4.8 探討DNA雜交動力學
4.8.1 DNA雜交動力學參數估計
第五章 總結
5.1 HPV DNA 探針之生化感測器
5.2 未來展望
余聲宏,「光纖漸逝波感測器應用於微量生物分子檢測」,國立陽明大學醫學工程所碩士論文,2004。

徐繹翔,「應用石英微量天平元件檢測人類乳突病毒」,國立交通大學生物科技所碩士論文,2005。

張孟福,「利用定域化表面電漿共振之光纖式生化感測器於金屬離子與腸炎弧菌之檢測」,國立中正大學化學工程研究所碩士論文,2005。

曾正維,「利用金奈米之表面電漿共振現象於氫氟酸及金屬離子之檢測」,國立中正大學化學工程研究所碩士論文,2005。

鄭淑芳,「金奈米粒子修飾光纖於化學及生化感測上的應用」,國立中正大學化生研究所碩士論文,2001。

鄭淑芳,「表面電將共振感測器」,國立中正大學化生研究所博士論文,2004。

董瑞安、雷文剛、蔡曉忠,「生物感測器在環境偵測上的應用」,科儀新知,第 19 卷,第 2 期,137–142 頁,1997年。

謝振傑,「光纖感測器」,物理雙月刊,第28卷,第四期,704-710頁,2006年。

羅婉瑜,「利用表面增強拉曼光譜判別3,6-Bis(1-methy1-4-vinylpyridinium) carbazole Diiodide與DNA鳥糞票呤四角結構及雙股螺旋結構的鍵結方式」,中正大學化學所碩士論文,2004。

魏伸紘,「以電化學法檢測人類乳突病毒序列之研究」,國立交通大學生物科技所碩士論文,2005。

Ausubel F. M., 1999, Short Protocols in Molecular Biology: A Compendium of Methods From Current Protocols in Molecular Biology, 4th ed., Wiley, New York.

Campbell N. F., Evans J. A., and Fawcett N. C., 1993, "Detection of poly (U) hybridization using azido modified poly (A) coated piezoelectric crystals", Biochem. Biophys. Res. Comnzun., 196, 858-863.

Chau L. K., Lin Y. F., Cheng S. F., and Lin T. J., 2006, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance”, Sensor. Actuat. B-Chem., 113, 100-105.

Cheng S. F., and Chau L. K., 2003,“ Colloidal gold-modified optical fiber for chemical and biochemical sensing”, Anal. Chem., 75, No. 1, 16-21.

Cuzick J., Beverley E., Ho L., Terry G., Sapper H., Mielzynska I., Lorincz A., Chan W.-K., Krausz T., and Soutter P., 1999, " HPV testing in primary screening of older women", Br. J. Cancer, 81, 554-558.

Demers L. M., Mirkin C. A., Mucic R. C., Reynolds R. A., Letsinger R. L., Elghanian R., and Viswanadham G., 2000, “A Fluorescence-Based Method for Determining the Surface Coverage and Hybridization Efficiency of Thiol-Capped Oligonucleotides Bound to Gold Thin Films and Nanoparticles”, Anal. Chem., 72, No. 22, 5535-5541.

De-Vuyst H., Claeys P., Njiru S., Muchiri L., Steyaert S., De Sutter P., Van Marck E., Bwayo J., and Temmerman M., 2005, “Comparison of pap smear, visual inspection with acetic acid, human papillomavirus DNA-PCR testing and cervicography”, Int. J. Gynecol. Obstet., 89, No. 2, 120-126.

Endo T., Kerman K., Nagatani N., Takamura Y., and Tamiya E., 2005, “Label-Free Detection of Peptide Nucleic Acid-Hybridization Using Localized Surface Plasmon Resonance Based Optical Biosensor”, Anal. Chem., 77, 6976-6984.

Erts D., Polyakov B., Olin H., and Tuite E., 2003, "Spatial and Mechanical Properties of Dilute DNA Monolayers on Gold Imaged by AFM", J. Phys. Chem. B, 107, 3591-3597.

Feng H. C., Choy M. Y., Deng W., Wong H. L., Lau W. M., Cheung A. N., Ngan H. Y., Tsao S. W., 2005, “Establishment and characterization of a human first-trimester extravillous trophoblast cell line (TEV-1)”, J. Soc. Gynecol. Invest., 12, e21-32.

Ganesh S. B. S., Petrenko V. A., and Simonian L. A., "Prevention of Non-specific binding as a Way to Increase Sensitivity of SPR-based Biosensors", 2004 Joint International Meeting- 206th Meeting of the Electrochemical Society/2004 Fall Meeting of the Electrochemical Society of Japan, Japan, 2196-2202, 2004.

Georgiadis R., Peterlinz K. P., and Peterson A. W., 2000, “Quantitative Measurements and Modeling of Kinetics in Nucleic Acid Monolayer Films Using SPR Spectroscopy”, J. Am. Chem. Soc., 122, No. 13, 3166-3173.


Haes A. J. and Van Duyne R. P., 2004, “A unified view of propagating and localized surface plasmon resonance biosensors”, Anal. Bioanal. Chem., 379, No. 7-8, 920-930.

Herne T. M. and Tarlov M. J., 1997, “Characterization of DNA Probes Immobilized on Gold Surfaces”, J. Am. Chem. Soc., 119, 8916-8920.

Hirschfeld T. B., 1993, “Device and method for nucleic acid analysis by hybridization assay with specifically binding fluorochrome”, U. S. Patent, 5,242,797.

Homola J., Yee S. S., and Gauglitz G., 1999, “Surface plasmon resonance sensors: review”, Sensor. Actuat. B-Chem., 54, 3-15.

Hubbard R. A., 2003, “Human Papillomavirus Testing Methods”, Arch. Pathol. Lab. Med., 127, No. 8, 940-945.

Hutter E. and Fendler J. H., 2004, “Exploitation of localized surface plasmon resonance”, Adv. Mater., 16, No. 19, 1685-1706.

Hybrid Capture 2 HPV DNA Test, Digene Corp., Gaithersburg, MD, 2002.

Jorgenson R. C., and Yee S. S., 1993, “A fiber-optic chemical sensor based on surface plasmon resonance”, Sensor. Actuat. B-Chem., 12, 213-220.

Jorgenson R. C., and Yee S. S., 1994, “Control of the dynamic range and sensitivity of a surface plasmon resonance based fiber optic sensor”, Sensor. Actuat. A-Phys., 43, 44-48.

Kaufman R. H., Adam E., and Vonka V., 2000, “Human Papillomavirus Infection and Cervical Carcinoma”, Clin. Obstet. Gynecol., 43, No. 2, 363-380.




Kelley S. O., Barton J. K., Jackson N. M., McPherson L. D., Potter A. B., Spain E. M., Allen M. J., and Hill M. G., 1998, “Orienting DNA Helices on Gold Using Applied Electric Fields”, Langmuir, 14, No. 24, 6781-6784.

Levicky R., Herne T. M., Tarlov M. J., and Satija S. K., 1998, “Using Self-Assembly To Control the Structure of DNA Monolayers on Gold: A Neutron Reflectivity Study”, J. Am. Chem. Soc., 120, 9787-9792.

Lin Hao, Moh J.-S., Ou Y.-C., Shen S.-Y., Tsai Y.-M., ChangChien C.-C., Liu J. M., Ma Y.-Y., 2005, “A simple method for the detection and genotyping of high-risk human papillomavirus using seminested polymerase chain reaction and reverse hybridization”, Gynecol. Oncol., 96, 84-91.

Lofas S., and Johnsson B., 1990, “A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands”, J. Chem. Soc., Chem. Commun., 21, 1526-1528.

Lyon L. A., Musick M. D., Smith P. C., Reiss B. D., Peña D. J., Natan M. J., 1999, “Surface plasmon resonance of colloidal Au-modified gold films”, Sensor. Actuat. B-Chem., 54, 118-124.

Malinsky M. D., Kelly K. L., Schatz G. C., and Van Duyne R. P., 2001, “Nanosphere Lithography: Effect of Substrate on the Localized Surface Plasmon Resonance Spectrum of Silver Nanoparticles”, J. Phys. Chem. B, 105, 2343-2350.

Mannelli F., Minunni A., Tombelli S., Wang R. H., Spiriti M. M., and Mascini M., 2005, “Direct immobilisation of DNA probes for the development of affinity biosensors”, Bioelectrochemistry, 66, 129-138.

Marie R., Jensenius H., Thaysen J., Christensen C. B., Boisen A., 2002, “Adsorption kinetics and mechanical properties of thiol-modified DNA-oligos on gold investigated by microcantilever sensors”, Ultramicroscopy, 91, 29-36.

Nakamura F., and Hara M., 2005, "The Length Effect of Probe DNA for Hybridization using DNA Self-Assembled Monolayer", e-J. Surf. Sci. Nanotech., 3, 250-253.

Nath N., and Chilkoti A., 2002a, “creating “smart” surfaces using stimuli responsive polymers”, Adv. Mater., 14, No. 17, 1243-1247.

Nath N., and Chilkoti A., 2002b, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface”, Anal. Chem., 74, 504-509.

Park S., Brown K. A., and Hamad-Schifferli K., 2004, “Changes in Oligonucleotide Conformation on Nanoparticle Surfaces by Modification with Mercaptohexanol”, Nano Lett., 4, No. 10, 1925-1929.

Peterlinz K. A., Georgiadis R. M., Herne T. M., and Tarlov, M. J., 1997, “Observation of Hybridization and Dehybridization of Thiol-Tethered DNA Using Two-Color Surface Plasmon Resonance Spectroscopy”, J. Am. Chem. Soc., 119, No. 14, 3401-3402.

Peterson A. W., Heaton R. J., and Georgiadis R., 2000, “Kinetic Control of Hybridization in Surface Immobilized DNA Monolayer Films”, J. Am. Chem. Soc., 122, 7837-7838.

Peterson A. W., Heaton R. J. and Georfiadis R. M., 2001, “the effect of surface probe density on DNA hybridization”, Nucleic Acids Res., 29, No. 24, 5163-5168.

Peterson A. W., Wolf L. K., and Georgiadis R. M., 2002, “Hybridization of Mismatched or Partially Matched DNA at Surfaces”, J. Am. Chem. Soc., 124, 14601-14607.

Piunno P. A. E., Erull U. J., Hudson R. H. E., Damha M. J., and Cohen H., 1994, "Fiber Optic Biosensor for Fluorometric detection of DNA Hybridization", Anal. Chim. Acta, 288, 205-214.

Prasad P.N., 2003, Introduction to Biophotonics, Wiley-Interscience, New Jersey, Chapter 9.
Rich R. L. and Myszka D. G, 2000, “advance in surface plasmon resonance biosensor analysis”, Curr. Opin. Biotech., 11, 54-61.

Ronot-Trioli C., Trouillet A., Veillas C., El Shaikh A., and Gagnaire H., 1996a, “Fiber optic chemical sensor based on surface plasmon monochromatic excitation”, Anal. Chim. Acta, 319, 121-127.

Ronot-Trioli C., Trouillet A., Veillas C., and Gagnaire H., 1996b, “Monochromatic excitation of surface plasmon resonance in an optical-fiber refractive-index sensor”, Sensor. Actuat. A-Phys., 54, 589-593.

Sakao Y., Nakamura F., Ueno N., and Hara M., 2005, “Hybridization of oligonucleotide by using DNA self-assembled monolayer”, Colloid Surf. B-Biointerfaces, 40, 149-152.

Sambrook J., Fritsch E. F., and Maniatis T., Molecular Cloning: A Laboratory Manual, New York, Laboratory Press, 1986.

Schmitt M., Bravo I. G., Snijders P. J. F., Gissmann L., Pawlita M., and Waterboer T., 2006, "Bead-Based Multiplex Genotyping of Human Papillomaviruses", J. Clin. Microbiol., 44, 504-512.


Sokkalinga-Balasubramanian S. G., Petrenko V. A., and Simonian A. L., “Prevention of non-specific binding as a way to increase sensitivity of SPR-based biosensors”, 206th Meeting of the Electrochemical Society, Honolulu, Hawaii, 2196-2202, 2004.

Steel A. B., Herne T. M., and Tarlov M. J., 1998, “Electrochemical Quantitation of DNA Immobilized on Gold”, Anal. Chem., 70, No. 22, 4670-4677.

Steel A. B., Herne T. M., and Tarlov M. J., 1999, “Electrostatic Interactions of Redox Cations with Surface-Immobilized and Solution DNA”, Bioconjugate Chem., 10, 419-423.


Steel A. B., Levicky R. L., Herne T. M., and Tarlov M. J., 2000, “Immobilization of Nucleic Acids at Solid Surfaces: Effect of Oligonucleotide Length on Layer Assembly”, Biophys. J., 79, 975-981.
Su H., Williams P., and Thompson M., 1995, "Platinum anticancer drug binding to DNA detected by thickness-shear-mode acoustic wave sensor", And. Chem., 67, 1010-1013.

Sushko M. L., Shluger A. L., and Rivetti C., 2006, “Simple Model for DNA Adsorption onto a Mica Surface in 1:1 and 2:1 Electrolyte Solutions”, Langmuir, 22, 7678-7688.

Taitt C. R., Anderson G. P., and Ligler F. S., 2005, “Review Evanescent wave fluorescence biosensors”, Biosens. Bioelectron., 20, 2470-2487.

Terry G., Ho L., Londesborough P., Cuzick J., Mielzynska-Lohnas I., and Lorincz A., 2001, “Detection of high-risk HPV types by the hybrid capture 2 test”, J. Med. Virol., 65, 155-162.

Wang R. H., Minunni M., Tombelli S., and Mascini M., 2004, ”A new approach for the detection of DNA sequences in amplified nucleic acids by a surface plasmon resonance biosensor”, Biosens. Bioelectron., 20, 598-605.

Wang J., Cai X., Rivas G., Shiraishi H., Farias P. A. M., Dontha N., 1996, "DNA electrochemical biosensor for the detection of short DNA sequences related to the human immunodeficiency virus", Int. J. Comput. Vis., 18, 2629-2634.

Watts H. J., Yeung D., and Parkes H., 1995, “Real-time detection and quantification of DNA hybridization by an optical biosensor”, Anal. Chem., 67, No. 23, 4283-4289.

Wood S. J., 1993, “DNA-DNA Hybridization in Real Time Using BIAcore”, Microchem. J., 47, No. 3, 330-337.




Yamasaki R., Kim J. M., Jung H. S., Lee H. Y., and Kawai T., 2006, “Dependence upon ionic strength in the immobilization of probingoligonucleotides onto streptavidin-modified probe surfaces”, Biochem. Eng. J., 29, 125-128.

Zhai J.-H., Cui H., and Yang R.-F., 1997, "DNA based biosensors", Biotechnol. Adv., 15, 43-58.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 謝振傑,「光纖感測器」,物理雙月刊,第28卷,第四期,704-710頁,2006年。
2. 董瑞安、雷文剛、蔡曉忠,「生物感測器在環境偵測上的應用」,科儀新知,第 19 卷,第 2 期,137–142 頁,1997年。
3. 1. 尹美琪(2002)。專責單位主導之「服務-學習」課程-以輔仁大學為例。通識教育季刊,第9卷,第3期,第35-72頁。
4. 8. 朱惠芳(2003)。回首來時路--淡大教育學程「教育專業服務課程」的實踐與省思民。教育研究,第111期,第143-148頁。
5. 16. 李琪明(2006)。將品德帶進教室、民主融入校園-品德本位校園文化營造之理念簡介。教師天地,第142期,第22-35頁。
6. 18. 沈六(1997)。服務學習。公民訓育學報,第六輯。
7. 19. 沈六(1999)。美國的服務學習。訓育研究, 第38卷,第4期,第91-103 頁。
8. 20. 周富美(2002)。學校教育與公民資質之培育--以服務學習為例,致理學報,第51期,第 266-281頁。
9. 24. 林至善(2002b)。服務學習理念與實踐-以東吳大學服務學習課程為例。學生輔導,第81期,第 82-93頁。
10. 28. 林振春(2000b)。開放學習的理念與社區服務學習的實踐。社教雙月刊。
11. 33. 邱華慧、李宜賢(2000)。社會服務學習與青少年道德及社會發展之相關研究。弘光學報。
12. 39. 張民杰(2005)。師資生從事國小數學科服務學習之行動研究-課後輔導的成效與建議。國民教育研究學報,第14期,第135-157頁。
13. 41. 張雪梅(2002)。學校為什麼需要推動服務學習。學生輔導,第81期,第8-17頁。
14. 45. 梅高文(1994)。公民意識與志願服務。社區發展季刊。
15. 47. 許世璋(2003)。大學環境教育課程介入研究:著重於環境行動、內控觀、與環境責任感的成效分析。環境教育研究,第1卷,第1期,第139-172頁。