跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 02:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李明嘉
研究生(外文):Ming-ChiaLee
論文名稱:零電壓與零電流切換之多階模組電容箝位式直流-直流電能轉換器
論文名稱(外文):Zero-Voltage and Zero-Current Switching for Multilevel Modular Capacitor-Clamped DC-DC Converter
指導教授:楊宏澤楊宏澤引用關係
指導教授(外文):Hong-Tzer Yang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:98
中文關鍵詞:?電壓與?電??換多階模組電容箝位式直?-直?電能轉換器?換式電容
外文關鍵詞:Zero-voltage and zero-current switching (ZVZCS)multilevel modular capacitor-clamped DC-DC converter (MMCCC)switched-capacitor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:373
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
切換式直流-直流電能轉換器被廣泛應用於電力電子電路,可驅分為兩種類型:切換式電感直流-直流電能轉換器與切換式電容直流-直流電能轉換器。切換式電容直流-直流電能轉換器架構具有切換式電感所沒有的優點,因此應用較廣。
本論文於既有電路架構中,提出與分析一具零電壓與零電流切換之多階模組電容箝位式直流-直流電能轉換器,特點為所有的開關元件不需使用任何輔助開關即能達到零電壓與零電流切換,並在開關導通瞬間能消除米勒效應以減少驅動損失,且不增加電壓與電流應力。本文實作一兩百瓦四階三模組具雙向零電壓與零電流切換之多階模組電容箝位式直流-直流電能轉換器雛型電路,依據模擬與實驗結果證實,本論文所提出電能轉換器相較於既有電路架構能呈現出更好之性能。
Grouped into two main categories of switched-inductor and switched-capacitor DC-DC power converters, the switching-mode DC-DC power converter is one of the widely used power electronic circuits. With many advantages over the switched-inductor type, the switched-capacitor DC-DC power converter topologies have been widely employed.
In this thesis, on the basis of existing topology a zero-voltage and zero-current switching (ZVZCS) scheme for multilevel modular capacitor-clamped DC-DC converter (MMCCC) is proposed and analyzed. The proposed ZVZCS MMCCC circuit features that all switching devices of the circuit can achieve ZVZCS without the need of extra auxiliary switching devices. The proposed ZVZCS MMCCC can eliminate the Miller effect of the power MOSFETs during turn-on operation with the total driving losses reduced. Furthermore, there is no additional voltage and current stress on all switches out of the ZVZCS. A 200 W, four-level, three-module prototype ZVZCS MMCCC circuit has been implemented and verified through simulations and experiments. Superior performance of the proposed circuit to the existing topology has been demonstrated in the thesis.
ABSTRACT I
摘要 III
誌謝 IV
TABLE OF CONTENTS V
LIST OF TABLES IX
LIST OF FIGURES X
CHAPTER 1. INTRODUCTION 1
1.1. BACKGROUNDS AND MOTIVATIONS 1
1.2. LITERATURE SURVEY 2
1.3. CONTRIBUTION OF THE THESIS 3
1.4. THESIS OUTLINE 4
CHAPTER 2. THE EXISTING CIRCUITS OF MULTILEVEL MODULAR CAPACITOR-CLAMPED DC-DC CONVERTER AND RELATED SOFT-SWITCHING TECHNOLOGIES REVIEW 5
2.1. INTRODUCTION 5
2.2. MMCCC 6
2.3. ZCS MMSCC 7
2.4. SUMMARY 8
CHAPTER 3. PROPOSED ZVZCS MMCCC 9
3.1. INTRODUCTION 9
3.2. THE PROPOSED ZVZCS MMCCC 9
3.3. CIRCUIT DESCRIPTION AND OPERATION PRINCIPLES 11
3.3.1. Step-down Mode 12
3.3.2. Step-up Mode 23
3.4. DESIGN GUIDELINES 31
3.4.1. Capacitance 31
3.4.2. Stray Inductance 32
3.4.3. Switching and Resonant Frequencies 34
3.4.4. ZVS Cell 34
3.5. SUMMARY 37
CHAPTER 4. SIMULATION AND EXPERIMENTAL RESULTS 38
4.1. INTRODUCTION 38
4.2. SIMULATED RESULTS 38
4.2.1. Step-down Mode 39
4.2.2. Step-up Mode 44
4.3. EXPERIMENTAL SETUP 49
4.4. EXPERIMENTAL RESULTS 52
4.4.1. Elimination of the Miller Effect 54
4.4.2. Step-Down Mode 55
4.4.3. Step-up Mode 61
4.5. EFFICIENCY MEASUREMENTS 67
4.5.1. Efficiency Measurements of the System 67
4.5.2. Efficiency Measurements of the Power Stage 70
4.5.3. Measurements of the total driving losses 73
4.6. SUMMARY 75
CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH WORKS 76
5.1. CONCLUSIONS 76
5.2. FUTURE RESEARCH WORKS 77
REFERENCES 79
APPENDIX A. SCHEMATICS OF THE PROPOSED ZVZCS MMCCC 86
A.1. BLOCK DIAGRAM OF THE PROPOSED ZVZCS MMCCC 86
A.2. MAIN CIRCUIT SCHEMATICS OF THE PROPOSED ZVZCS MMCCC 87
A.3. MODULAR CELL SCHEMATICS OF THE PROPOSED ZVZCS MMCCC 90
APPENDIX B. SIMPLIS? SIMULATION SCHEMATICS 92
APPENDIX C. PCB LAYOUT OF THE PROPOSED ZVZCS MMCCC 94
APPENDIX D. SOURCE CODE OF MICROCHIP? DSPIC30F4011 MICROCONTROLLER IN C LANGUAGE 95
[1]M. K. KAZIMIERCZUK, Pulse-width modulated DC-DC power converters, USA: Wiley, 2008.
[2]R. A. Mack, Demystifying switching power supplies, USA: Newnes, 2005.
[3]S. Winder, Power supplies for LED driving, USA: Newnes, 2008.
[4]Z. Singer, A. Emanuel, and M. S. Erlicki, Power regulation by means of a switched capacitor, in Proc. IEE, Feb. 1972, pp. 149-152.
[5]D. Midgley and M. Sigger, Switched capacitors in power control, in Proc. IEE, Jul. 1974, pp. 703-704.
[6]J. F. Dickson, On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique, IEEE J. Solid-State Circuits, vol. 11, no. 3, pp. 374-378, Jun. 1976.
[7]M. Liu, Demystifying switched-capacitor circuits, USA: Newnes, 2006.
[8]M. D. Seeman. (2009, May 21). A design methodology for switched-capacitor DC-DC converters. Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-78.pdf
[9]K. D. T. Ngo and R. Webster, Steady-state analysis and design of a switched-capacitor DC-DC converter, in Proc. IEEE PESC, Jun./Jul. 1992, pp. 378-385.
[10]W. S. Harris and K. D. T. Ngo, Operation and design of a switched-capacitor DC-DC converter with improved power rating, in Proc. IEEE APEC, Feb. 1994, pp. 192-198.
[11]K. D. T. Ngo and R. Webster, Steady-state analysis and design of a switched-capacitor DC-DC converter, IEEE Trans. Aerosp. Electron. Syst., vol. 30, no. 1, pp. 92-101, Jan. 1994.
[12]W. S. Harris and K. D. T. Ngo, Power switched-capacitor DC-DC converter: analysis and design, IEEE Trans. Aerosp. Electron. Syst., vol. 33, no. 2, pp. 386-395, Apr. 1997.
[13]F. Ueno, T. Inoue, I. Oota, and I. Harada, Power supply for electroluminescence aiming integrated circuit, in Proc. IEEE ISCAS, May. 1992, pp. 1903-1906.
[14]O. C. Mak, Y. C. Wong, and A. Ioinovici, Step-up DC power supply based on a switched-capacitor circuit, IEEE Trans. Ind. Electron., vol. 42, no. 1, pp. 90-97, Feb. 1995.
[15]M. S. Makowski and D. Maksimovic, Performance limits of switched-capacitor DC-DC converters, in Proc. IEEE PESC, Jun. 1995, pp. 1215-1221.
[16]H. S. H. Chung, W. C. Chow, S. Y. R. Hui, and S. T. S. Lee, Development of a switched-capacitor DC-DC converter with bidirectional power flow, IEEE Trans. Circuits Syst., vol. 47, no. 9, pp. 1383-1389, Sep. 2000.
[17]M. D. Seeman and S. R. Sanders, Analysis and optimization of switched-capacitor DC-DC converters, in Proc. IEEE COMPEL, Jul. 2006, pp. 216-224.
[18]M. D. Seeman and S. R. Sanders, Analysis and optimization of switched-capacitor DC-DC converters, IEEE Trans. Power Electron., vol. 23, no. 2, pp. 841-851, Mar. 2008.
[19]F. Z. Peng, F. Zhang, and Z. Qian, A novel compact DC-DC converter for 42 V systems, in Proc. IEEE PESC, Jun. 2003, pp. 33-38.
[20]F. Zhang, F. Z. Peng, and Z. Qian, Study of the multilevel converters in DC-DC applications, in Proc. IEEE PESC, Jun. 2004, pp. 1702-1706.
[21]Z. Pan, F. Zhang, and F. Z. Peng, Power losses and efficiency analysis of multilevel DC-DC converters, in Proc. IEEE APEC, Mar. 2005, pp. 1393-1398.
[22]F. Zhang, L. Du, F. Z. Peng, and Z. Qian, A new design method for high efficiency DC-DC converters with flying capacitor technology, in Proc. IEEE APEC, Mar. 2006, pp. 92-96.
[23]M. Shen, F. Z. Peng, and L. M. Tolbert, Multi-level DC-DC power conversion system with multiple DC sources, in Proc. IEEE PESC, Jun. 2007, pp. 2008-2014.
[24]M. Shen, F. Z. Peng, and L. M. Tolbert, Multilevel DC-DC power conversion system with multiple DC sources, IEEE Trans. Power Electron., vol. 23, no. 1, pp. 420-426, Jan. 2008.
[25]F. Zhang, L. Du, F. Z. Peng, and Z. Qian, A new design method for high-power high-efficiency switched-capacitor DC-DC converters, IEEE Trans. on Power Electron., vol. 23, no. 2, pp. 832-840, Mar. 2008.
[26]W. Qian, F. Z. Peng, M. Shen, and L. M. Tolbert, 3X DC-DC Multiplier/Divider for HEV Systems, in Proc, IEEE APEC, Feb. 2009, pp. 1109-1114.
[27]T. Umeno, K. Takahashi, I. Oota, F. Ueno, and T. Inoue, New switched-capacitor DC-DC converter with low input current ripple and its hybridization, in Proc. IEEE MWSCAS, Aug. 1990, pp. 1091-1094.
[28]F. Z. Peng, A generalized multilevel inverter topology with self voltage balancing, in Proc. IEEE IAS, Oct. 2000, pp. 2024-2031.
[29]F. Z. Peng, A generalized multilevel inverter topology with self voltage balancing, IEEE Trans. Ind. Appl., vol. 37, no. 2, pp. 611-618, Mar./Apr. 2001.
[30]F. Z. Peng, F. Zhang, and Z. Qian, A magnetic-less DC-DC converter for dual voltage automotive systems, in Proc. IEEE IAS, Dec. 2002, pp. 1303-1310.
[31]F. Z. Peng, F. Zhang, and Z. Qian, A magnetic-less DC-DC converter for dual-voltage automotive systems, IEEE Trans. Ind. Appl., vol. 39, no. 2, pp. 511-518, Mar./Apr. 2003.
[32]M. Xu, J. Sun, and F. C. Lee, Voltage divider and its application in the two-stage power architecture, in Proc. IEEE APEC, Mar. 2006, pp. 499-505.
[33]F. H. Khan, Modular DC-DC converters, Ph.D. dissertation, The University of Tennessee, knoxville, Apr. 2007.
[34]F. H. Khan and L. M. Tolbert, A multilevel modular capacitor-clamped DC-DC converter, IEEE Trans. Ind. Appl., vol. 43, no. 6, pp. 1628-1638, Nov./Dec. 2007.
[35]F. H. Khan and L. M. Tolbert, 5 kW multilevel DC-DC converter for hybrid electric and fuel cell automotive applications, in Proc. IEEE IAS, Sep. 2007, pp. 628-635.
[36]F. H. Khan and L. M. Tolbert, Multiple load-source integration in a multilevel modular capacitor clamped DC-DC converter featuring fault tolerant capability, in Proc. IEEE APEC, Feb./Mar. 2007, pp. 361-367.
[37]F. H. Khan and L. M. Tolber, Universal multilevel dc-dc converter with variable conversion ratio, high compactness factor and limited isolation feature, in Proc. IEEE APEC, Feb. 2008, pp. 17-23.
[38]F. H. Khan and L. M. Tolbert, Generating isolated outputs in a multilevel modular capacitor clamped DC-DC converter (MMCCC) for hybrid electric and fuel cell vehicles, in Proc. IEEE PESC, Jun. 2008, pp. 967-973.
[39]F. H. Khan and L. M. Tolbert, Multiple-load-source integration in a multilevel modular capacitor-clamped DC-DC converter featuring fault tolerant capability, IEEE Trans. Power Electron., vol. 24, no. 1, pp. 14-24, Jan. 2009.
[40]F. H. Khan and L. M. Tolbert, Bi-directional power management and fault tolerant feature in a 5-kW multilevel dc-dc converter with modular architecture, IET Trans. Power Electron., vol. 2, no. 5, pp. 595-604, Sep. 2009.
[41]F. H. Khan, L. M. Tolbert, and W. E. Webb, Hybrid electric vehicle power management solutions based on isolated and nonisolated configurations of multilevel modular capacitor-clamped converter, IEEE Trans. Ind. Electron., vol. 56, no. 8, pp. 3079-3095, Aug. 2009.
[42]F. H. Khan, L. M. Tolbert, and W. E. Webb, Start-up and dynamic modeling of the multilevel modular capacitor-clamped converter, IEEE Trans. Power Electron., vol. 25, no. 2, pp. 519-531, Feb. 2010.
[43]K. W. E. Cheng, New generation of switched capacitor converters, in Proc. IEEE PESC, May. 1998, pp. 1529-1535.
[44]H. S. h. Chung, Design and analysis of a switched-capacitor-based step-up DC/DC converter with continuous input current, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 46, no. 6, pp. 722-730, Jun. 1999.
[45]K. W. E. Cheng, Zero-current-switching switched-capacitor converters, in Proc. IEE Elect. Power Appl., Sep. 2001, pp. 403-409.
[46]Y. P. B. Yeung, K. W. E. Cheng, S. L. Ho, and D. Sutanto, Generalised analysis of switched-capacitor step-down quasi-resonant converter, Electron. Lett., vol. 38, no. 6, pp. 263-264, Mar. 2002.
[47]Y. P. B. Yeung, K. W. E. Cheng, D. Sutanto, and S. L. Ho, Zero-current switching switched-capacitor quasiresonant step-down converter, in Proc. IEE Elect. Power Appl., Mar. 2002, pp. 111-121.
[48]Y. P. B. Yeung, K. W. E. Cheng, S. L. Ho, K. K. Law, and D. Sutanto, Unified analysis of switched-capacitor resonant converters, IEEE Trans. Ind. Electron., vol. 51, no. 4, pp. 864-873, Aug. 2004.
[49]K. K. Law, K. W. E. Cheng, and Y. P. B. Yeung, Design and analysis of switched-capacitor-based step-up resonant converters, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 5, pp. 943-948, May. 2005.
[50]A. Ioinovici, Switched-capacitor power electronics circuits, IEEE Trans. Circuits Syst., vol. 1, no. 3, pp. 37-42, Aug. 2001.
[51]A. Ioinovici, C. K. Tse, and H. S. H. Chung, Comments on design and analysis of switched-capacitor-based step-up resonant converters, IEEE Trans. on Circuits Syst. I, Reg. Papers, vol. 53, no. 6, p. 1403, Jun. 2006.
[52]A. Ioinovici, H. S. H. Chung, M. S. Makowski, and C. K. Tse, Comments on unified analysis of switched-capacitor resonant converters, IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 684-685, Feb. 2007.
[53]D. Cao and F. Z. Peng, Zero-current-switching multilevel modular switched-capacitor DC-DC converter, in Proc. IEEE ECCE, Sep. 2009, pp. 3516-3522.
[54]D. Cao and F. Z. Peng, A family of zero current switching switched-capacitor DC-DC converters, in Proc. IEEE APEC, Feb. 2010, pp. 1365-1372.
[55]C. Basso. (2004, November) Get rid of the Miller effect with zero-voltage switching. Power Electronics Technology. pp. 62-63. Available: www.powerelectronics.com
[56]L. Balogh. (2001) Design and application guide for high speed MOSFET gate drive circuits. TI Unitrode World Power Supply Seminar. Available: http://focus.ti.com/lit/ml/slup169/slup169.pdf
[57]O. Abdel-Rahman, J. Liu, L. Yao, I. Batarseh, and H. Mao, LCC zero-voltage-switching buck converter with synchronous rectifier, in Proc. IEEE IAS, Oct. 2006, pp. 2150-2156.
[58]O. Abdel-Rahman, Entire load efficiency and dynamic performance improvements for DC-DC converters, Ph.D. dissertation, University of Central Florida, Florida, 2007.
[59]B. Bletterie, R. Br?ndlinger, and H. H?berlin, Redefinition of the European efficiency - finding the compromise between simplicity and accuracy, in Proc. EUPVSEC, Sep. 2008, pp. 2735-2742.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top