|
[1]M. K. KAZIMIERCZUK, Pulse-width modulated DC-DC power converters, USA: Wiley, 2008. [2]R. A. Mack, Demystifying switching power supplies, USA: Newnes, 2005. [3]S. Winder, Power supplies for LED driving, USA: Newnes, 2008. [4]Z. Singer, A. Emanuel, and M. S. Erlicki, Power regulation by means of a switched capacitor, in Proc. IEE, Feb. 1972, pp. 149-152. [5]D. Midgley and M. Sigger, Switched capacitors in power control, in Proc. IEE, Jul. 1974, pp. 703-704. [6]J. F. Dickson, On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique, IEEE J. Solid-State Circuits, vol. 11, no. 3, pp. 374-378, Jun. 1976. [7]M. Liu, Demystifying switched-capacitor circuits, USA: Newnes, 2006. [8]M. D. Seeman. (2009, May 21). A design methodology for switched-capacitor DC-DC converters. Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-78.pdf [9]K. D. T. Ngo and R. Webster, Steady-state analysis and design of a switched-capacitor DC-DC converter, in Proc. IEEE PESC, Jun./Jul. 1992, pp. 378-385. [10]W. S. Harris and K. D. T. Ngo, Operation and design of a switched-capacitor DC-DC converter with improved power rating, in Proc. IEEE APEC, Feb. 1994, pp. 192-198. [11]K. D. T. Ngo and R. Webster, Steady-state analysis and design of a switched-capacitor DC-DC converter, IEEE Trans. Aerosp. Electron. Syst., vol. 30, no. 1, pp. 92-101, Jan. 1994. [12]W. S. Harris and K. D. T. Ngo, Power switched-capacitor DC-DC converter: analysis and design, IEEE Trans. Aerosp. Electron. Syst., vol. 33, no. 2, pp. 386-395, Apr. 1997. [13]F. Ueno, T. Inoue, I. Oota, and I. Harada, Power supply for electroluminescence aiming integrated circuit, in Proc. IEEE ISCAS, May. 1992, pp. 1903-1906. [14]O. C. Mak, Y. C. Wong, and A. Ioinovici, Step-up DC power supply based on a switched-capacitor circuit, IEEE Trans. Ind. Electron., vol. 42, no. 1, pp. 90-97, Feb. 1995. [15]M. S. Makowski and D. Maksimovic, Performance limits of switched-capacitor DC-DC converters, in Proc. IEEE PESC, Jun. 1995, pp. 1215-1221. [16]H. S. H. Chung, W. C. Chow, S. Y. R. Hui, and S. T. S. Lee, Development of a switched-capacitor DC-DC converter with bidirectional power flow, IEEE Trans. Circuits Syst., vol. 47, no. 9, pp. 1383-1389, Sep. 2000. [17]M. D. Seeman and S. R. Sanders, Analysis and optimization of switched-capacitor DC-DC converters, in Proc. IEEE COMPEL, Jul. 2006, pp. 216-224. [18]M. D. Seeman and S. R. Sanders, Analysis and optimization of switched-capacitor DC-DC converters, IEEE Trans. Power Electron., vol. 23, no. 2, pp. 841-851, Mar. 2008. [19]F. Z. Peng, F. Zhang, and Z. Qian, A novel compact DC-DC converter for 42 V systems, in Proc. IEEE PESC, Jun. 2003, pp. 33-38. [20]F. Zhang, F. Z. Peng, and Z. Qian, Study of the multilevel converters in DC-DC applications, in Proc. IEEE PESC, Jun. 2004, pp. 1702-1706. [21]Z. Pan, F. Zhang, and F. Z. Peng, Power losses and efficiency analysis of multilevel DC-DC converters, in Proc. IEEE APEC, Mar. 2005, pp. 1393-1398. [22]F. Zhang, L. Du, F. Z. Peng, and Z. Qian, A new design method for high efficiency DC-DC converters with flying capacitor technology, in Proc. IEEE APEC, Mar. 2006, pp. 92-96. [23]M. Shen, F. Z. Peng, and L. M. Tolbert, Multi-level DC-DC power conversion system with multiple DC sources, in Proc. IEEE PESC, Jun. 2007, pp. 2008-2014. [24]M. Shen, F. Z. Peng, and L. M. Tolbert, Multilevel DC-DC power conversion system with multiple DC sources, IEEE Trans. Power Electron., vol. 23, no. 1, pp. 420-426, Jan. 2008. [25]F. Zhang, L. Du, F. Z. Peng, and Z. Qian, A new design method for high-power high-efficiency switched-capacitor DC-DC converters, IEEE Trans. on Power Electron., vol. 23, no. 2, pp. 832-840, Mar. 2008. [26]W. Qian, F. Z. Peng, M. Shen, and L. M. Tolbert, 3X DC-DC Multiplier/Divider for HEV Systems, in Proc, IEEE APEC, Feb. 2009, pp. 1109-1114. [27]T. Umeno, K. Takahashi, I. Oota, F. Ueno, and T. Inoue, New switched-capacitor DC-DC converter with low input current ripple and its hybridization, in Proc. IEEE MWSCAS, Aug. 1990, pp. 1091-1094. [28]F. Z. Peng, A generalized multilevel inverter topology with self voltage balancing, in Proc. IEEE IAS, Oct. 2000, pp. 2024-2031. [29]F. Z. Peng, A generalized multilevel inverter topology with self voltage balancing, IEEE Trans. Ind. Appl., vol. 37, no. 2, pp. 611-618, Mar./Apr. 2001. [30]F. Z. Peng, F. Zhang, and Z. Qian, A magnetic-less DC-DC converter for dual voltage automotive systems, in Proc. IEEE IAS, Dec. 2002, pp. 1303-1310. [31]F. Z. Peng, F. Zhang, and Z. Qian, A magnetic-less DC-DC converter for dual-voltage automotive systems, IEEE Trans. Ind. Appl., vol. 39, no. 2, pp. 511-518, Mar./Apr. 2003. [32]M. Xu, J. Sun, and F. C. Lee, Voltage divider and its application in the two-stage power architecture, in Proc. IEEE APEC, Mar. 2006, pp. 499-505. [33]F. H. Khan, Modular DC-DC converters, Ph.D. dissertation, The University of Tennessee, knoxville, Apr. 2007. [34]F. H. Khan and L. M. Tolbert, A multilevel modular capacitor-clamped DC-DC converter, IEEE Trans. Ind. Appl., vol. 43, no. 6, pp. 1628-1638, Nov./Dec. 2007. [35]F. H. Khan and L. M. Tolbert, 5 kW multilevel DC-DC converter for hybrid electric and fuel cell automotive applications, in Proc. IEEE IAS, Sep. 2007, pp. 628-635. [36]F. H. Khan and L. M. Tolbert, Multiple load-source integration in a multilevel modular capacitor clamped DC-DC converter featuring fault tolerant capability, in Proc. IEEE APEC, Feb./Mar. 2007, pp. 361-367. [37]F. H. Khan and L. M. Tolber, Universal multilevel dc-dc converter with variable conversion ratio, high compactness factor and limited isolation feature, in Proc. IEEE APEC, Feb. 2008, pp. 17-23. [38]F. H. Khan and L. M. Tolbert, Generating isolated outputs in a multilevel modular capacitor clamped DC-DC converter (MMCCC) for hybrid electric and fuel cell vehicles, in Proc. IEEE PESC, Jun. 2008, pp. 967-973. [39]F. H. Khan and L. M. Tolbert, Multiple-load-source integration in a multilevel modular capacitor-clamped DC-DC converter featuring fault tolerant capability, IEEE Trans. Power Electron., vol. 24, no. 1, pp. 14-24, Jan. 2009. [40]F. H. Khan and L. M. Tolbert, Bi-directional power management and fault tolerant feature in a 5-kW multilevel dc-dc converter with modular architecture, IET Trans. Power Electron., vol. 2, no. 5, pp. 595-604, Sep. 2009. [41]F. H. Khan, L. M. Tolbert, and W. E. Webb, Hybrid electric vehicle power management solutions based on isolated and nonisolated configurations of multilevel modular capacitor-clamped converter, IEEE Trans. Ind. Electron., vol. 56, no. 8, pp. 3079-3095, Aug. 2009. [42]F. H. Khan, L. M. Tolbert, and W. E. Webb, Start-up and dynamic modeling of the multilevel modular capacitor-clamped converter, IEEE Trans. Power Electron., vol. 25, no. 2, pp. 519-531, Feb. 2010. [43]K. W. E. Cheng, New generation of switched capacitor converters, in Proc. IEEE PESC, May. 1998, pp. 1529-1535. [44]H. S. h. Chung, Design and analysis of a switched-capacitor-based step-up DC/DC converter with continuous input current, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 46, no. 6, pp. 722-730, Jun. 1999. [45]K. W. E. Cheng, Zero-current-switching switched-capacitor converters, in Proc. IEE Elect. Power Appl., Sep. 2001, pp. 403-409. [46]Y. P. B. Yeung, K. W. E. Cheng, S. L. Ho, and D. Sutanto, Generalised analysis of switched-capacitor step-down quasi-resonant converter, Electron. Lett., vol. 38, no. 6, pp. 263-264, Mar. 2002. [47]Y. P. B. Yeung, K. W. E. Cheng, D. Sutanto, and S. L. Ho, Zero-current switching switched-capacitor quasiresonant step-down converter, in Proc. IEE Elect. Power Appl., Mar. 2002, pp. 111-121. [48]Y. P. B. Yeung, K. W. E. Cheng, S. L. Ho, K. K. Law, and D. Sutanto, Unified analysis of switched-capacitor resonant converters, IEEE Trans. Ind. Electron., vol. 51, no. 4, pp. 864-873, Aug. 2004. [49]K. K. Law, K. W. E. Cheng, and Y. P. B. Yeung, Design and analysis of switched-capacitor-based step-up resonant converters, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 5, pp. 943-948, May. 2005. [50]A. Ioinovici, Switched-capacitor power electronics circuits, IEEE Trans. Circuits Syst., vol. 1, no. 3, pp. 37-42, Aug. 2001. [51]A. Ioinovici, C. K. Tse, and H. S. H. Chung, Comments on design and analysis of switched-capacitor-based step-up resonant converters, IEEE Trans. on Circuits Syst. I, Reg. Papers, vol. 53, no. 6, p. 1403, Jun. 2006. [52]A. Ioinovici, H. S. H. Chung, M. S. Makowski, and C. K. Tse, Comments on unified analysis of switched-capacitor resonant converters, IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 684-685, Feb. 2007. [53]D. Cao and F. Z. Peng, Zero-current-switching multilevel modular switched-capacitor DC-DC converter, in Proc. IEEE ECCE, Sep. 2009, pp. 3516-3522. [54]D. Cao and F. Z. Peng, A family of zero current switching switched-capacitor DC-DC converters, in Proc. IEEE APEC, Feb. 2010, pp. 1365-1372. [55]C. Basso. (2004, November) Get rid of the Miller effect with zero-voltage switching. Power Electronics Technology. pp. 62-63. Available: www.powerelectronics.com [56]L. Balogh. (2001) Design and application guide for high speed MOSFET gate drive circuits. TI Unitrode World Power Supply Seminar. Available: http://focus.ti.com/lit/ml/slup169/slup169.pdf [57]O. Abdel-Rahman, J. Liu, L. Yao, I. Batarseh, and H. Mao, LCC zero-voltage-switching buck converter with synchronous rectifier, in Proc. IEEE IAS, Oct. 2006, pp. 2150-2156. [58]O. Abdel-Rahman, Entire load efficiency and dynamic performance improvements for DC-DC converters, Ph.D. dissertation, University of Central Florida, Florida, 2007. [59]B. Bletterie, R. Br?ndlinger, and H. H?berlin, Redefinition of the European efficiency - finding the compromise between simplicity and accuracy, in Proc. EUPVSEC, Sep. 2008, pp. 2735-2742.
|