|
1.Key Facts about Influenza (Flu). Available from: http://www.cdc.gov/flu/keyfacts.htm. 2.A revision of the system of nomenclature for influenza viruses: a WHO Memorandum. Bulletin of the World Health Organization, 1980. 58(4): p. 585-591. 3.Hause, B.M., et al., Characterization of a novel influenza virus in cattle and Swine: proposal for a new genus in the Orthomyxoviridae family. MBio, 2014. 5(2): p. e00031-14. 4.Bouvier, N.M. and P. Palese, THE BIOLOGY OF INFLUENZA VIRUSES. Vaccine, 2008. 26(Suppl 4): p. D49-D53. 5.Wagner, R., M. Matrosovich, and H.D. Klenk, Functional balance between haemagglutinin and neuraminidase in influenza virus infections. Rev Med Virol, 2002. 12(3): p. 159-66. 6.Tong, S., et al., A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci U S A, 2012. 109(11): p. 4269-74. 7.Tong, S., et al., New World Bats Harbor Diverse Influenza A Viruses. PLoS Pathogens, 2013. 9(10): p. e1003657. 8.THE VIRUS OF INFLUENZA. The Lancet, 1933. 222(5732): p. 83. 9.Smith, W., C.H. Andrewes, and P.P. Laidlaw, Originally published as Volume 2, Issue 5732A VIRUS OBTAINED FROM INFLUENZA PATIENTS. The Lancet, 1933. 222(5732): p. 66-68. 10.Jeffery, T. and M.M. David, 1918 Influenza: the Mother of All Pandemics. Emerging Infectious Disease journal, 2006. 12(1): p. 15. 11.Kobasa, D., et al., Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature, 2007. 445(7125): p. 319-23. 12.Belshe, R.B., The Origins of Pandemic Influenza — Lessons from the 1918 Virus. New England Journal of Medicine, 2005. 353(21): p. 2209-2211. 13.McCullers, J.A., et al., Recipients of vaccine against the 1976 "swine flu" have enhanced neutralization responses to the 2009 novel H1N1 influenza virus. Clin Infect Dis, 2010. 50(11): p. 1487-92. 14.Hurt, A.C., et al., Oseltamivir resistance and the H274Y neuraminidase mutation in seasonal, pandemic and highly pathogenic influenza viruses. Drugs, 2009. 69(18): p. 2523-31. 15.Bloom, J.D., L.I. Gong, and D. Baltimore, Permissive secondary mutations enable the evolution of influenza oseltamivir resistance. Science, 2010. 328(5983): p. 1272-5. 16.Dawood, F.S., et al., Estimated global mortality associated with the first 12 months of 2009 pandemic influenza A H1N1 virus circulation: a modelling study. The Lancet Infectious Diseases, 2012. 12(9): p. 687-695. 17.Moore, C., et al., Evidence of person-to-person transmission of oseltamivir-resistant pandemic influenza A(H1N1) 2009 virus in a hematology unit. J Infect Dis, 2011. 203(1): p. 18-24. 18.Okomo-Adhiambo, M., et al., Oseltamivir-resistant influenza A(H1N1)pdm09 viruses, United States, 2013-14. Emerg Infect Dis, 2015. 21(1): p. 136-41. 19.Igarashi, M., et al., Predicting the antigenic structure of the pandemic (H1N1) 2009 influenza virus hemagglutinin. PLoS One, 2010. 5(1): p. e8553. 20.Yang, H., et al., Structural stability of influenza A(H1N1)pdm09 virus hemagglutinins. J Virol, 2014. 88(9): p. 4828-38. 21.Brunak, S., et al., Nucleotide Sequence Database Policies. Science, 2002. 298(5597): p. 1333-1333. 22.National Center for Biotechnology Information (NCBI). Available from: http://www.ncbi.nlm.nih.gov/. 23.EMBL-European Bioinformatics Institute (EMBL-EBI). Available from: http://www.ebi.ac.uk/. 24.DNA Data Bank of Japan (DDBJ). Available from: http://www.ddbj.nig.ac.jp/. 25.NCBI Influenza Virus Resource. Available from: http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.html. 26.Bao, Y., et al., The influenza virus resource at the National Center for Biotechnology Information. J Virol, 2008. 82(2): p. 596-601. 27.Influenza Research Database. Available from: http://www.fludb.org/brc/home.spg?decorator=influenza. 28.Tamiflu via Diels-Alder, Roche, Editor. 2006. 29.Rungrotmongkol, T., et al., Design of oseltamivir analogs inhibiting neuraminidase of avian influenza virus H5N1. Antiviral Res, 2009. 82(1): p. 51-8. 30.Samji, T., Influenza A: Understanding the Viral Life Cycle. The Yale Journal of Biology and Medicine, 2009. 82(4): p. 153-159. 31.Shi, Y., et al., Enabling the 'host jump': structural determinants of receptor-binding specificity in influenza A viruses. Nat Rev Microbiol, 2014. 12(12): p. 822-31. 32.Webster, D., et al., Oseltamivir-resistant pandemic H1N1 influenza. CMAJ : Canadian Medical Association Journal, 2011. 183(7): p. E420-E422. 33.de Jong , M.D., et al., Oseltamivir Resistance during Treatment of Influenza A (H5N1) Infection. New England Journal of Medicine, 2005. 353(25): p. 2667-2672. 34.Baz, M., et al., Effect of the neuraminidase mutation H274Y conferring resistance to oseltamivir on the replicative capacity and virulence of old and recent human influenza A(H1N1) viruses. J Infect Dis, 2010. 201(5): p. 740-5. 35.Marjuki, H., et al., Neuraminidase Mutations Conferring Resistance to Oseltamivir in Influenza A(H7N9) Viruses. J Virol, 2015. 89(10): p. 5419-26. 36.Myers, J.L. and S.E. Hensley, Oseltamivir-resistant influenza viruses get by with a little help from permissive mutations. Expert Rev Anti Infect Ther, 2011. 9(4): p. 385-8. 37.Bloom, J.D., J.S. Nayak, and D. Baltimore, A computational-experimental approach identifies mutations that enhance surface expression of an oseltamivir-resistant influenza neuraminidase. PLoS One, 2011. 6(7): p. e22201. 38.Abed, Y., et al., Impact of potential permissive neuraminidase mutations on viral fitness of the H275Y oseltamivir-resistant influenza A(H1N1)pdm09 virus in vitro, in mice and in ferrets. J Virol, 2014. 88(3): p. 1652-8. 39.Butler, J., et al., Estimating the fitness advantage conferred by permissive neuraminidase mutations in recent oseltamivir-resistant A(H1N1)pdm09 influenza viruses. PLoS Pathog, 2014. 10(4): p. e1004065. 40.Behera, A.K., S. Basu, and S.S. Cherian, Molecular mechanism of the enhanced viral fitness contributed by secondary mutations in the hemagglutinin protein of oseltamivir resistant H1N1 influenza viruses: modeling studies of antibody and receptor binding. Gene, 2015. 557(1): p. 19-27. 41.Rice, P., I. Longden, and A. Bleasby, EMBOSS: The European Molecular Biology Open Software Suite. Trends in Genetics, 2000. 16(6): p. 276-277. 42.Katoh, K., et al., MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 2002. 30(14): p. 3059-3066. 43.Katoh, K. and H. Toh, Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform, 2008. 9(4): p. 286-98. 44.Katoh, K. and M.C. Frith, Adding unaligned sequences into an existing alignment using MAFFT and LAST. Bioinformatics, 2012. 28(23): p. 3144-6. 45.Katoh, K. and D.M. Standley, MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol, 2013. 30(4): p. 772-80. 46.Katoh, K. and H. Toh, PartTree: an algorithm to build an approximate tree from a large number of unaligned sequences. Bioinformatics, 2007. 23(3): p. 372-4. 47.Dubois, J., O. Terrier, and M. Rosa-Calatrava, Influenza viruses and mRNA splicing: doing more with less. MBio, 2014. 5(3): p. e00070-14. 48.Taylor, W.R., Residual colours: a proposal for aminochromography. Protein Eng, 1997. 10(7): p. 743-6.
|