跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/17 04:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡衍穎
研究生(外文):Yan-Ying Tsai
論文名稱:肖特基接觸式氫氣感測器之研製
論文名稱(外文):Investigation of Schottky Contact-Type Hydogen Sensors
指導教授:劉文超劉文超引用關係
指導教授(外文):Wen-Chau Liu
學位類別:博士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:187
中文關鍵詞:氫氣感測器氮化鎵二極體電晶體磷化鋁銦
外文關鍵詞:GaNhydrogen sensortransistordiodeInAlP
相關次數:
  • 被引用被引用:0
  • 點閱點閱:319
  • 評分評分:
  • 下載下載:56
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,吾人研製了一系列的肖特基接觸式氫氣感測器。藉由觸媒金屬(鈀或鉑)作為閘極金屬,氫氣分子會被解離成氫原子;同時部分的氫原子將會擴散通過觸媒金屬層並吸附在金屬-氧化層或金屬-半導體的介面;最後這些氫原子會被極化成一偶極層。此一偶極層的存在將會改變肖特基接觸式氫氣感測器之電流-電壓特性。實驗得知,肖特基接觸式氫氣感測器具備低氫氣濃度之探測能力、耐高溫以及寬廣的操作範圍。此外,短暫的響應時間亦是此氫氣感測器之優點。
首先,吾人製作了以磷化銦鋁為主動層,鉑金屬-氧化層-半導體及鉑金屬-半導體肖特基二極體式氫氣感測器。不論是在順偏壓或者是逆偏壓,此元件皆具有寬廣的溫度操作範圍和高氫氣探測能力,並且能夠探測很低含量的氫氣濃度(4.3 ppm H2/air)。同時,針對氧化層的存在與否作探討,發現具有氧化層之元件,其介面能夠吸附較多的氫原子,獲得較高的感測靈敏度。此外,對於氣體動力機制亦有深入的研究與探討。
接著,為了研究載氣對氫氣感測之影響,製作了鉑金屬-氧化層-氮化鎵肖特基式氫氣感測器。在以合成空氣為載氣及包含9970 ppm氫氣的環境下,其串聯電阻由191.8 Ω降低到155.3 Ω。然而,以高純度氮氣取代合成空氣為載氣並且導入4.3 ppm的氫氣時,得到較為顯著的開通電壓和串聯電阻變化量,其分別為0.32 V和19.56 Ω。推斷合成空氣中的氧氣將會和氫氣反應形成氫氧基及水,導致較少的氫原子進入觸媒金屬。此外,即使在室溫下,此一元件依然能夠快速地感測到氫氣的存在。
為了加強所轉換出的電子訊號,並且增加實用價值,吾人進一步研製了具有電氣訊號放大功能的擬晶性高電子移動率電晶體,作為氫氣感測器。由實驗結果得知,此元件確實大幅度的提升了對氫氣的偵測能力。此外,藉由ISE模擬軟體,成功地描繪出擬晶性高電子移動率電晶體之電特性及其氫氣感測特性。
然後,吾人探究不同半導體材料之肖特基接觸對氫氣感測的影響,發現缺少磷化銦鎵層的元件,具有較好的氫氣感測能力,然其對溫度之穩定性較差。另一方面,藉由高純度氮氣為載氣的環境中,解析氫氣感測暫態響應之行為。
最後,吾人設計並製作一個具有放大功能的積體電路,其中包括 解碼器、傳輸閘極開關以及運算放大器三種電子元件。解碼器的運用提供了數個輸入閘,可同時接上數個感測器,產生數個不同的輸入訊號。電路的運作主要是將每個解碼器的輸出連結到開關的時脈輸入,來控制開關的開通與斷路,使得其中一個感測器的訊號能夠被導入運算放大器,最後得到一個放大的輸出訊號。除了可以同時控制數比輸入訊號,對於偵測低氫氣濃度亦具有極大的優勢。
In this dissertation, a series of Schottky contact-type hydrogen sensors are proposed. By using the catalytic metals (Pd or Pt) as the gate materials, the hydrogen molecules will be dissolved as hydrogen atoms. Part of those hydrogen atoms will diffuse through the metal bulk and adsorb at the metal-oxide or metal-semiconductor interface. Those adsorbed hydrogen atoms will be polarized to form a dipolar layer. Due to the presence of this dipolar layer, the significant changes in current-voltage characteristics of the studied devices are found. Experimentally, the studied hydrogen sensors can work in a low hydrogen concentration, high operating temperature, and wide hydrogen concentration range environments. Also, a short response time is observed in real-time applications. These results demonstrate the promise of the studied devices to perform as fast-responsive and sensitive hydrogen sensors over a broad range of operating temperature.
In chapter 2, the Pt-InAlP metal-oxide-semiconductor and metal-semiconductor Schottky diode hydrogen sensors with high-sensitive hydrogen detection among wide operating temperature regime are comprehensively studied and compared. Experimentally, both the hydrogen sensors can be operated systematically under bi-polarity biases. In addition, it is worth to note that even an extremely low hydrogen concentration of 4.3 ppm H2/air can be effectively detected at the temperature of 30~250oC. The detecting sensitivity of the MOS-type hydrogen sensor is superior to that of the MS-type. It is believed that a high-quality oxide layer effectively increases the amount of hydrogen atoms adsorbed. Also, the hydrogen effects are found on both the Schottky barrier height lowering and the modulation in the electric field at the Pt-oxide and Pt-InAlP interfaces.
In chapter 3, hydrogen sensing properties of a Pt-oxide-GaN metal-oxide-semiconductor-type Schottky diode is demonstrated and studied. In the hydrogen-containing environment, the shift of current-voltage curves and decrease of turn-on voltage Von are found to be caused by the lowering of Schottky barrier height. Also, the corresponding series resistance Rs is decreased from 191.8 (in air) to 155.3 Ω (under a 9970 ppm H2/air gas) at 30oC. As the carrier gas is replaced by a nitrogen gas, a significant variation of 0.32 V and 19.56 Ω in Von and Rs values are obtained at 30oC, respectively, even at an extremely low hydrogen concentration of 4.3 ppm H2/N2. Since the oxygen atoms will be dissolved on the Pt metal surface and react with hydrogen atoms by the formation of hydroxyl and water, the amount of adsorbed hydrogen atoms on the Pt surface is reduced. Moreover, the shorter response time constant and the larger initial rate of current density variation are found even at room temperature.
In chapter 4, an interesting transistor-type hydrogen sensing detector based on GaAs pseudomorphic high electron mobility transistor with a Pd/Al0.24Ga0.76As metal-semiconductor Schottky gate structure is fabricated and investigated. The significant modulations in electrical signals are observed obviously due to the adsorption of hydrogen atoms at Pd-semiconductor interface. The corresponding adsorption and desorption time constants (�跾 and �踀) are 2.5 and 6 sec, respectively, under a 9970 ppm H2/air gas at 160oC. Theoretically, the dipolar layer formed by the hydrogen atoms adsorbed at the Pd-AlGaAs interface can be considered as a two-dimensional layer. The simulated curves show excellent agreement with experimental results. In addition, an anomalous decrease phenomenon in transient response is observed, which may be caused by the formation of hydroxyl species and water. Consequentially, the studied device provides the promise for GaAs integrated circuit and micro electric and mechanic system applications.
In chapter 5, the interesting hydrogen sensing characteristics of two transistors with an Al0.24Ga0.76As (device A) and In0.49Ga0.51P (device B) Schottky layer are demonstrated. Experimentally, device A shows a lower hydrogen detection limit of 4.3 ppm H2/air, a higher current variation of 7.79 mA and a shorter adsorption time of 10.95 s in a 9970 ppm H2/air at room temperature. On the other hand, device B exhibits more stable hydrogen-sensing characteristics at high temperatures. In addition, the transient hydrogen sensing phenomenon of device A is studied. In an N2 environment, the sensing signal is proportion to the logarithmic values of hydrogen concentration at temperature from 30 to 160oC. Due to the higher activation energy for initiating the reverse hydrogen release process, the current-response of hydrogen-detecting signal is always not recovered back to the original baseline level. At higher temperature, the recovering curve can be divided into three regions: (i) initial, (ii) accumulation, and (iii) revival stages. Because the recombination process of hydrogen atoms is slower, larger amount of desorbed hydrogen atoms are accumulated on the Pd metal surface which results in the longer desorption time. However, the higher speed desorption phenomenon is observed in the presence of oxygen.
In chapter 6, a back-end amplifying integrated circuit is designed and fabricated. The output amplifying circuit is composed of three electronic devices including the decoder, CMOS transmission gate switch, and operational amplifier. Several input sensing signals can be introduced simultaneously and controlled by the decoder and switch. One of these input sensing signals can pass through the switch, and the output signal of the sensing signal is amplified.
Abstract
Table Captions
Figure Captions
Chapter 1 Introduction
1.1 Introduction........................................................................................................... 1
1.2 Gas Detection Apparatus and Measurement......................................................... 3
1.3 Disertations Organization...................................................................................... 4
Chapter 2 Comprehensive Investigation of Hydrogen-Sensing Properties of Pt/InAlP-Based Schottky Diodes
2.1 Introduction........................................................................................................... 6
2.2 Experimental........................................................................................................ 7
2.3 Results and Discussion......................................................................................... 8
2.4 Summary...............................................................................................................15
Chapter 3 Hydrogen-Sensing Properties of a Pt-oxide-GaN Schottky Diode
3.1 Introduction..........................................................................................................16
3.2 Experimental........................................................................................................17
3.3 Results and Discussion.........................................................................................18
3.4 Summary...............................................................................................................23
Chapter 4 Comprehensive Study of Hydrogen Sensing Properties of a Pd/Al0.24Ga0.76As-Based High Electron Mobility Transistor
4.1 Introduction..........................................................................................................24
4.2 Experimental........................................................................................................26

4.3 Results and Discussion.........................................................................................26
4.3.1 Steady-State Analysis...............................................................……………26
4.3.2 Transient-Response Analysis..................................................……………31
4.3.3 Simulation Analysis..................................................................……………34
4.4 Summary...............................................................................................................36
Chapter 5 Comprehensive Study of Pd-gate Metal-Oxide-Semiconductor Transistor-type Hydrogen Sensors
5.1 Introduction..........................................................................................................38
5.2 Experimental........................................................................................................40
5.3 Comparative Study of Hydrogen Sensing Characteristics of Pd-MOS Transistors with Al0.24Ga0.76As and In0.49Ga0.51P Schottky Contact Layers
5.3.1 Results and Discussion.............................................................……………41
5.3.2 Summary...................................................................................……………45
5.4 Transient Response of Hydrogen Sensing Phenomenon of a Pd-InGaP MOS-type Field-Effec Transistor
5.4.1 Results and Discussion.............................................................……………46
5.4.2 Summary...................................................................................……………50
5.5 Summary...............................................................................................................50
Chapter 6 Integration of Back-end Amplification Circuit
6.1 Introduction..........................................................................................................51
6.2 Experimental and Simulation...............................................................................53
6.3 Summary...............................................................................................................56

Chapter 7 Conclusion and Prospect
7.1 Conclusions.....................................................................................................….57
7.2 Prospects…….......................................................................................................58
References
Tables
Figures
Publication List
1F. DiMeo Jr., I. S. Chen, P. Chen, J. Neuner, A. Roerhl, and J. Welch, “MEMS-based hydrogen gas sensors,” Sens. Actuators B, vol. 117, pp. 10-16, 2006.
2P. Ripka, J. Kubik, M. Duffy, W. G. Hurley, and S. O’Reilly, “Current sensor in PCB technology,” Sensors, 2002 Proceedings of IEEE, vol. 2, pp. 779-784, 2002.
3J. P. Sullivan, T. A. Friedmann, and K. Hjort, “Diamond and amorphous MEMS,” MRS Bull., vol. 26, pp. 309-311, 2001.
4P. Tobias, A. Baranzahi, A. L. Spetz, O. Kordina, E. Janzén, and I. Lundström, “Fast chemical sensing with metal-insulator silicon carbide structures,” IEEE Trans. Electron Device Lett., vol. 18, pp. 287-289, 1997.
5P. T. Moseley, “Solid state gas sensors,” Meas. Sci. Technol., vol. 8, pp. 223-237, 1997.
6G. J. Maclay, W. J. Buttner, and J. R. Stetter, “Microfabricated amperometric gas sensors,” IEEE Trans. Electron Devices, vol. 35, pp. 793-799, 1988.
7S. R. Morrison, “Semiconductor gas sensors,” Sens. Actuators, vol. 2, pp. 329-341, 1982.
8D. K. Ross, “Hydrogen storage: The major technological barrier to the development of hydrogen fuel cell cars,” Vacuum, vol. 80, pp. 1084-1089, 2006.
9M. Z. Jacobson, W. G. Colella, and D. M. Golden, “Cleaning the air and improving health with hydrogen fuel-cell vehicles,” Science, vol. 308, pp. 1901-1905, 2005.
10G. J. K. Acres, “Recent advances in fuel cell technology and its applications,” J. Power Sources, vol. 100, pp. 60-66, 2001.
11W. Peschka, “Hydrogen: The future cryofuel in internal combustion engines,” Int. J. Hydrogen Energy, vol. 23, pp. 27-43, 1998.
12P. Van Blarigan and J. O. Keller, “A hydrogen fuelled internal combustion engines designed for single speed/power operation,” Int. J. Hydrogen Energy, vol. 23, pp. 603-609, 1998.
13R. L. David, CRC Handbook of Chemistry and Physics – 79th ed., CRC-Press Taylor & Francis Group, 1998.
14A. Mandelis and C. Christofides, Physics, Chemistry and Technology of Solid State Gas Sensor Devices – 1st ed., John Willey & Sons, Inc., 1993.
15C. Christofides and A. Mandelis, “Solid-state sensors for trace hydrogen gas detection,” J. Appl. Phys., vol. 68, pp. R1-R30, 1990.
16N. Graber, H. Lüdi, and H. M. Widmer, “The use of chemical sensors in indstury,” Sens. Actuators B, vol. 1, pp. 239-243, 1990.
17W. Ruihua and T. A. Jones, “The characteristics of gas-sensitive multilayer devices based on lead phthalocyanine,” Sens. Actuators B, vol. 2, pp. 33-42, 1990.
18N. Miura, H. Kaneko, and N. Yamazoe, “A four-probe type gas sensor using a solid-state proton conductor sensitive to hydrogen at room temperature,” J. Electrochem. Soc., vol. 134, pp. 1875-1876, 1987.
19T. L. Fare, I. Lundström, J. N. Zemel, and A. Feygenson, “Reversible neutralization of boron acceptors by hydrogen in Pd-SiO2-Si capacitors,” Appl. Phys. Lett., vol. 48, pp. 632-634, 1986.
20Y. K. Jun, H. S. Kim, J. H. Lee, and S. H. Hong, “High H2 sensing behavior of TiO2 films formed by thermal oxidation,” Sens. Actuators B, vol. 107, pp. 264-270, 2005.
21N. S. Baik, G. Sakai, N. Miura, and N. Yamazoe, “Hydrothermally treated sol solution of tin oxide for thin-film gas sensor,” Sens. Actuators B, vol. 63, pp. 74-79, 2000.
22H. I. Chen, C. K. Hsiung, and Y. I Chou, “Characteristics of Pd-GaAs Schottky diodes prepared by the electroless plating technique,” Semicond. Sci. Technol., vol. 18, pp. 620-626, 2003.
23C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, C. W. Hung, R. C. Liu, and W. C. Liu, “Pd-oxide-Al0.24Ga0.76As (MOS) high electron mobility transistor (HEMT)-based hydrogen sensor,” IEEE Sensors J., vol. 6, pp. 287-292, 2006.
24D. Briand, H. Sunddrgen, B. van der Schoot, I. Lundström, and N. F. de. Rooij, “Thermally isolated MOSFET for gas sensing application,” IEEE Electron Devices Lett., vol. 22, pp. 11-13, 2001.
25H. Seo, T. Endoh, H. Fukuda, and S. Nomura, “Highly sensitive MOSFET gas sensors with porous platinum gate electrode,” Electron. Lett., vol. 33, pp. 535-536, 1997.
26A. Baranzahi, A. L. Spetz, B. Andersson, and I. Lundström, “Gas sensitive field effect devices for high temperatures,” Sens. Actuators B, vol. 26, pp. 165-169, 1995.
27Y. K. Fang, S. B. Hwang, C. Y. Lin, and C. C. Lee, “Trench Pd/Si metal-oxide-semiconductor Schottky barrier diode for a high sensitivity hydrogen gas sensor,” Appl. Phys. Lett., vol. 57, pp. 2686-2688, 1990.
28K. Tajima, Y. Choi, W. Shin, N. Izu, I. Matsubara, and N. Murayama, “Micro-thermoelectric hydrogen sensors with Pt film and Pt/alumina thick film catalysts,” J. Electrochem. Soc., vol. 153, pp. H58-H62, 2006.
29J. M. Smulko, J. Ederth, Y. F. Li, L. B. Kish, M. K. Kennedy, and F. E. Kruis, “Gas sensing by thermoelectric voltage fluctuations in SnO2 nanoparticle films,” Sens. Actuators B, vol. 106, pp. 708-712, 2005.
30N. Maffei and A. K. Kuriakose, “A solid-state potentiometric sensor for hydrogen detection in air,” Sens. Actuators B, vol. 98, pp. 73-76, 2004.
31N. Miura, T. Harada, and N. Yamazoe, “Sensing characteristics and working mechanism of four-probe type solid-state hydrogen sensor using proton conductor,” J. Electrochem. Soc., vol. 136, pp. 1215-1219, 1989.
32J. Villatoro, D. Luna-Moreno, and D. Monzon-Hernandez, “Optical fiber hydrogen sensor for concentrations below the lower explosive limit,” Sens. Actuators B, vol. 110, pp. 23-27, 2005.
33S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuators B, vol. 108, pp. 508-514, 2005.
34J. A. Thiele and M. Pereira da Cunha, “High temperature LGS SAW gas sensor,” Sens. Actuators B, vol. 113, pp. 816-822, 2006.
35S. J. Ippolito, S. Kandasamy, K. Kalntar-Zadeh, A. Trinchi, and W. Wlodarski, “Layered SAW ZnO/LiTaO3 structure using WO3 selective layer for hydrogen sensing,” Sensor Lett., vol. 1, pp. 33-36, 2003.
36J. Sippel-Oakley, H. T. Wang, B. S Kang, Z. C. Wu, F. Ren, A. G Rinzler, and S. J Pearton, “Carbon nanotube films for room temperature hydrogen sensing,” Nanotechnology, vol. 16, pp. 2218-2221, 2005.
37Y. M. Wang, W. P. Kang, J. L. Davidson, A. Wisitsora-at, and K. L. Soh, “A novel microelectronic gas sensor utilizing carbon nanotubes for hydrogen gas detection,” Sens. Actuators B, vol. 93, pp. 327-332, 2003.
38Y. I Chou, H. C. Chiang, and C. C. Wang, “Study on Pd functionalization of microcantilever for hydrogen detection promotion,” Sens. Actuators B, vol. 129, pp. 72-78, 2008.
39D. R. Baselt, B. Fruhberger, E. Klaassen, S. Cemalovic, C. L. Britton Jr., S. V. Patel, T. E. Mlsna, D. McCorkle, and B. Warmack, “Design and performance of a microcantilever-based hydrogen sensor,” Sens. Actuators B, vol. 88, pp. 120-131, 2003.
40M. Schreiter, R. Gabl, J. Lerchner, C. Hohlfeld, A. Delan, G. Wolf, A. Bluher, B. Katzschner, M. Mertig, and W. Pompe, “Functionalized pyroelectric sensors for gas detection,” Sens. Actuators B, vol. 119, pp. 255-261, 2006.
41A. Mandelis and C. H. Wang, “A novel PVDF thin-film photopyroelectric thermal-wave interferometry,” Ferroelectrics, vol. 236, pp. 235-246, 2000.
42U. Schlecht, K. Balasubramanian, M. Burghard, and K. Kern, “Electrochemically decorated carbon nanotubes for hydrogen sensing,” Appl. Sur. Sci., vol. 253, pp. 8394-8397, 2007.
43B. J. Lutz, Z. H. Fan, T. Burgdorf, and B. Frieldrich, “Hydrogen sensing by enzyme-catalyzed electrochemical detection,” Anal. Chem., vol. 77, pp. 4969-4975, 2005.
44F. I. Bohrer, A. Sharoni, C. Colesniuc, J. Park, I. K. Schuller, A. C. Kummel, and W. C. Trogler, “Gas sensing mechanism in chemiresistive cobalt and metal-free phthalocyanine thin films,” J. Am. Chem. Soc., vol. 129, pp. 5640-5646, 2007.
45T. Xu, M. P. Zach, Z. L. Xiao, D. Rosenmann, U. Welp, W. K. Kwok, and G. W. Crabtree, “Self-assembled monolayer-enhanced hydrogen sensing with ultrathin palladium films,” Appl. Phys. Lett., vol. 86, Art. No. 203104, 2005.
46H. J. Pan, K. W. Lin, K. H. Yu, C. C. Cheng, K. B. Thei, W. C. Liu, and H. I. Chen, “Highly hydrogen-sensitive Pd/InP metal-oxide-semiconductor Schottky diode hydrogen sensor,” Electron. Lett., vol. 38, pp. 92-94, 2002.
47C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, and W. C. Liu, “Hydrogen sensing properties of a Pt-oxide-Al0.24Ga0.76As high-electron-mobility transistor,” Appl. Phys. Lett., vol. 86, Art. No. 112103, 2005.
48I. Lundström, “Hydrogen sensitive MOS-structures Part 1: principles and applications,” Sens. Actuators, vol. 1, pp. 403-426, 1981.
49I. Lundström and D. Söderberg, “Hydrogen sensitive MOS-structures Part 2: characterization,” Sens. Actuators, vol. 2, pp. 105-138, 1982.
50Y. Yokosawa, K. Saitoh, S. Nakano, Y. Goto, and K. Tsukada, “FET hydrogen-gas sensor with direct heating of catalytic metal,” Sens. Actuators B, vol. 130, pp. 94-99, 2008.
51H. Hasegawa and M. Akazawa, “Mechanism and control of current transport in GaN and AlGaN Schottky barriers for chemical sensor,” Appl. Sur. Sci., vol. 254, pp. 3653-3666, 2008.
52N. Tasaltin, F. Dumludag, M. A. Ebeoglu, H. Yuzer, and Z. Z. Ozturk, “Pd/native nitride/n-GaAs structure as hydrogen sensors,” Sens. Actuators B, vol. 130, pp. 59-64, 2008.
53S. Nakagomi, T. Shida, H. Hoshi, and Y. Kokubun, “Field-effect hydrogen sensor device with floating gate exhibiting unique behavior,” Sens. Actuators B, vol. 125, pp. 408-414, 2007.
54T. Yamaguchi, T. Kiwa, K. Tsukada, and K. Yokosawa, “Oxygen interference mechanism of platinum-FET hydrogen gas sensor,” Sens. Actuators A, vol. 136, pp. 244-248, 2007.
55V. I. Filippov, A. A. Vasiliev, W. Moritz, and J. Szeponik, “Room-temperature hydrogen sensitivity of a MIS-structure based on the Pt/LaF3 interface,” IEEE Sensors J., vol. 6, pp. 1250-1255, 2006.
56S. Roy, C. Jacob, and S. Basu, “Studies on Pd/3C-SiC Schottky junction hydrogen sensors at high temperature,” Sens. Actuators B, vol. 94, pp. 298-303, 2003.
57H. I. Chen, Y. I Chou, and C. Y. Chu, “A novel high-sensitive Pd/InP hydrogen sensor fabricated by electroless plating,” Sens. Actuators B, vol. 85, pp. 10-18, 2002.
58K. W. Lin, C. C. Cheng, S. Y. Cheng, K. H. Yu, C. K. Wang, H. M. Chuang, J. Y. Chen, C. Z. Wu, and W. C. Liu, “A novel Pd/Oxide/GaAs metal-insulator-semiconductor field-effect transistor (MISFET) hydrogen sensor,” Semicond. Sci. Technol., vol. 16, pp. 997-1001, 2001.
59B. I. Podlepetskii, M. Y. Nikiforova, and S. V. Gumenyuk, “Stability investigation of the characteristics of integral hydrogen sensors,” Instrum. Exp. Tech., vol. 44, pp. 257-258, 2001.
60V. G. Litovchenko, T. I. Gorbanyuk, A. A. Efremov, and A. A. Evtukh, “Effect of macrostructure and composition of the top metal electrode on properties of MIS gas sensors,” Microelectronics Reliability, vol. 40, pp. 821-824, 2000.
61D. V. Kerns, W. P. Kang, J. L. Davidson, Q. Zhou, Y. Gurbuz, and S. E. Kerns, “Total-dose radiation-hard diamond-based hydrogen sensor,” IEEE Trans. Nucl. Sci., vol. 45, pp. 2799-2804, 1998.
62S. J. Gentry and T. A. Jones, “The role of catalysis in solid-state gas sensors,” Sens. Actuators, vol. 10, pp. 141-163, 1986.
63D. Kohl, “The role of noble-metals in the chemistry of solid-state gas sensors,” Sens. Actuators B, vol. 1, pp. 158-165, 1990.
64B. Keramati and J. N. Zemel, “Pd-thin-SiO2-Si diode. I. Isothermal variation of H2-induced interfacial trapping states,” J. Appl. Phys., vol. 53, pp. 1091-1099, 1982.
65B. Keramati and J. N. Zemel, “Pd-thin-SiO2-Si diode. II. Theoretical modeling and the H2 response,” J. Appl. Phys., vol. 53, pp. 1100-1114, 1982.
66M. Ali, V. Cimalla, V. Lebedev, H. Romanus, V. Tilak, D. Merfeld, P. Sandvik, and O. Ambacher, “Pt/GaN Schottky diodes for hydrogen gas sensors,” Sens. Actuators B, vol. 113, pp. 797-804, 2006.
67C. K. Kim, J. H. Lee, Y. H. Lee, N. I. Cho, and D. J. Kim, “A study on a platinum-silicon carbide Schottky diode as a hydrogen gas sensor,” Sens. Actuators B, vol. 66, pp. 116-118, 2000.
68L. Y. Chen, G. W. Hunter, P. G. Neudeck, G. Bansal, J. B. Petit, and D. Knight, “Comparison of interfacial and electronic properties of annealed Pd/SiC and Pd/SiO2/SiC Schottky diode sensors,” J. Vac. Sci. Technol A, vol. 15, pp. 1228-1234, 1997.
69P. F. Ruths, S. Ashok, S. J. Fonash, and J. M. Ruths, “A study of Pd/Si MIS Schottky barrier diode hydrogen detector,” IEEE Trans. Electron Devices, vol. 28, pp. 1003-1009, 1981.
70T. L. Poteat and B. Lalevic, “Pd-MOS hydrogen and hydrocarbon sensor device,” IEEE Electron Devices Lett., vol. 2, pp. 32-34, 1981.
71H. I. Chen and Y. I Chou, “A comparative study of hydrogen sensing performances between electroless plated and thermal evaporated Pd/InP Schottky diodes,” Semicond. Sci. Technol., vol. 18, pp. 104-110, 2003.
72M. Yousuf, B. Kuliyev, and B. Lalevic, “Pd-InP Schottky diode hydrogen sensors,” Solid-State Electron., vol. 25, pp. 753-758, 1982.
73A. Salehi, A. Nikfarjam, and D. J. Kalantari, “Pd/porous-GaAs Schottky contact for hydrogen sensing application,” Sens. Actuators B, vol. 113, pp. 419-427, 2006.
74W. P. Kang and Y. Gürbüz, “Comparison and analysis of Pd- and Pt-GaAs Schottky diodes for hydrogen detection,” J. Appl. Phys., vol. 75, pp. 8175-8181, 1994.
75N. Yamamoto, S. Tonomura, T. Matsuoka, and H. Tsubomura, “Effect of various substrates on the hydrogen sensitivity of palladium-semiconductor diodes,” J. Appl. Phys., vol. 52, pp. 6227-6230, 1981.
76K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, C. T. Lu, C. C. Cheng, and W. C. Liu, “Characteristics of Pd/InGaP Schottky diodes hydrogen sensors,” IEEE Sensors J., vol. 4, pp. 72-79, 2004.
77C. T. Lu, K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A new Pd-oxide-Al0.3Ga0.7As MOS hydrogen sensor,” IEEE Electron Devices Lett., vol. 24, pp. 390-392, 2003.
78J. Schalwig, G. Muller, M. Eickhoff, O. Ambacher, and M. Stutzmann, “Group III-nitride-based gas sensors for combustion monitoring,” Mater. Sci. Emg. B, vol. 93, pp. 207-214, 2002.
79B. P. Luther, S. D. Wolter, and S. E. Mohney, “High temperature Pt Schottky diode gas sensors on n-type GaN,” Sens. Actuators B, vol. 56, pp. 164-168, 1999.
80J. H. Song, W. Lu, J. S. Flynn, and G. R. Brandes, “AlGaN/GaN Schottky diode hydrogen sensor performance at high temperatures with different catalytic metals,” Solid-State Electron., vol. 49, pp. 1330-1334, 2005.
81K. Matsuo, N. Negoro, J. Kotani, T. Hashizume, and H. Hasegawa, “Pt Schottky diode gas sensors formed on GaN and AlGaN/GaN heterostructure,” Appl. Surf. Sci., vol. 244, pp. 273-276, 2005.
82Y. Oda, H. Yokoyama, K. Kurishima, T. Kobayashi, N. Watanabe, and M. Uchida, “Improvement of current gain of C-doped GaAsSb-base heterojunction bipolar transistors by using an InAlP emitter,” Appl. Phys. Lett., vol. 87, Art. No. 023503, 2005.
83H. Sugiyama, H. Yokoyama, H. Matsuzaki, T. Enoki, and T. Kobayashi, “Metal-organic vapor-phase epitaxy of pseudomorphic InAlP/InGaAs high electron mobility transistor wafers,” Jpn. J. Appl. Phys., vol. 44, pp. 3798-3802, 2005.
84S. Kandasamy, A. Trinchi, W. Wlodarski, E. Comini, and G. Sberveglieri, “Hydrogen and hydrocarbon gas sensing performance of Pt/WO3/SiC MROSiC devices,” Sens. Actuators B, vol. 111-112, pp. 111-116, 2005.
85W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, and C. K. Wang, “Comparative hydrogen-sensing study of Pd/GaAs and Pd/InP metal-oxide-semiconductor Schottky diodes,” Jpn. J. Appl. Phys., vol. 40, pp. 6254-6259, 2001.
86N. Newman, W. E. Spicer, T. Kendelewicz, and I. Lindua, “On the Fermi level pinning behavior of metal/III-V semiconductor interfaces,” J. Vac. Sci. Technol. B, vol. 4, pp. 931-938, 1986.
87N. Yamazoe and N. Miura, “Development of gas sensors for environmental protection,” Packing Manufacturing Technol. Park A, vol. 18, pp. 252-256, 1995.
88T. L. Poteat, B. Lalevic, B. Kuliyev, M. Yousuf, and M. Chen, “MOS and Schottky diode gas sensors using transition metal electrodes,” J. Electron. Mat., vol. 12, pp. 181-214, 1983.
89W. Henrion, M. Rebien, H. Angermann, and A. Roseler, “Spectroscopic investigation of hydrogen termination, oxide coverage, roughness, and surface state density of silicon during native oxidation in air,” Appl. Surf. Sci., vol. 202, pp. 199-205, 2002.
90R. Loloee, B. Chorpening, S. Beer, and R. N. Ghosh, “Hydrogen monitoring for power plant applications using SiC sensors,” Sens. Actuators B, vol. 129, pp. 200-210, 2008.
91S. M. Sze, Semiconductor Devices: Physics and Technology – 2nd ed., John Willey & Sons, Inc., 1985.
92C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, C. T. Lu, and W. C. Liu, “Hydrogen sensing characteristics of a Pt-oxide-Al0.3Ga0.7As MOS Schottky diode,” Sens. Actuators B, vol. 99, pp. 425-430, 2004.
93J. H. Song, W. Lu, J. S. Flynn, and G. R. Brandes, “Pt-AlGaN/GaN Schottky diodes operated at 800oC for hydrogen sensing,” Appl. Phys. Lett., vol. 87, Art. No. 133501, 2005.
94L. M. Lechuga, A. Calle, D. Golmayo, P. Tejedor, and F. Briones, “Hydrogen sensor based on a Pt/GaAs Schottky diode,” Sens. Actuators B, vol. 4, pp. 515-518, 1991.
95D. A. Neamen, Semiconductor Physics and Devices – 3rd ed., McGraw-Hill Companies, Inc., 2003.
96D. V. Lang, H. G. Grimmeiss, E. Meijer, and M. Jaros, “Complex nature of gold-related deep levels in silicon,” Phys. Rev. B, vol. 22, pp. 3917-3934, 1980.
97G. M. Martin, A. Mitonneau, and A. Mircea, “Electron traps in bulk and epitaxial GaAs crystals,” Electron. Lett., vol. 13, pp. 191-193, 1977.
98I. Lundström and L. G. Petersson, “Chemical sensors with catalytic metal gates,” J. Vac. Sci. Technol. A, vol. 14, pp. 1539-1545, 1996.
99M. Eriksson and L. G. Ekedahl, “Hydrogen adsorption states at the Pd/SiO2 interface and simulation of the response of a Pd metal-oxide-semiconductor hydrogen sensors,” J. Appl. Phys., vol. 83, pp. 3947-3951, 1998.
100R. J. Silbey and R. A. Alberty, Physical Chemistry - 3rd ed., John Willey & Sons, Inc., 2001.
101J. Fogelberg and L. G. Petersson, “Kinetic modeling of the H2-O2 reaction on Pd and of its influence on the hydrogen response of a hydrogen sensitive Pd metal-oxide-semiconductor device,” Surf. Sci., vol. 350, pp. 91-102, 1996.
102H. W. Jang and J. L. Lee, “Enhancement of electroluminescence in GaN-based light-emitting diodes using an efficient current blocking layer,” J. Vac. Sci. Technol. B, vol. 23, pp. 2284-2287, 2005.
103K. H. Kim, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “III-nitride ultraviolet light-emitting diodes with delta doping,” Appl. Phys. Lett., vol. 83, pp. 566-568, 2003.
104T. M. Smeeton, V. Bousquet, S. E. Hooper, M. Kauer, and J. Heffernan, “Atomic force microscopy analysis of cleaved facets in III-nitride laser diodes grown on free-standing GaN substrates,” Appl. Phys. Lett., vol. 88, Art. No. 041910, 2006.
105C. Skierbiszewski, P. Perlin, I. Grzegory, Z. R. Wasilewski, M. Siekacz, A. Feduniewicz, P. Wisniewski, J. Borysiuk, P. Prystawko, G. Kamler, T. Suski, and S. Porowski, “High power blue-violet InGaN laser diodes grown on bulk GaN substrates by plasma-assisted molecular beam epitaxy,” Semicond. Sci. Technol., vol. 20, pp. 809-813, 2005.
106H. Morkoc, A. Di Carlo, and R. Cingolani, “GaN-based modulation doped FETs and UV detectors,” Solid-State Electron., vol. 46, pp. 157-202, 2002.
107M. Razeghi and Rogalski, “Semiconductor ultraviolet detectors,” J. Appl. Phys., vol. 79, pp. 7433-7473, 1996.
108T. Palacios, A. Chakraborty, S. Rajan, C. Poblenz, S. Keller, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “High-power AlGaN/GaN HEMTs for Ka-band applications,” IEEE Electron Devices Lett., vol. 26, pp. 781-783, 2005.
109Y. C. Chang, K. Y. Tong, and C. Surya, “Numerical simulation of current-voltage characteristics of AlGaN/GaN HEMTs at high temperatures,” Semicond. Sci. Technol., vol. 20, pp. 188-192, 2005.
110A. Chini, J. Wittich, S. Heikman, S. Keller, S. P. DenBaars, and U. K. Mishra, “Power and linearity characteristics of GaN MISFETs on sapphire substrate,” IEEE Electron Devices Lett., vol. 25, pp. 55-57, 2004.
111C. Gaquiere, S. Trassaert, B. Boudart, and Y. Crosnier, “High-power GaN MESFET on sapphire substrate,” IEEE Microwave Guided Wave Lett., vol. 10, pp. 19-20, 2000.
112Y. Y. Tsai, K. W. Lin, H. I. Chen, C. W. Hung, T. P. Chen, and W. C. Liu, “Hydrogen sensing performance of Pt-oxide-GaN Schottky diode,” Electron. Lett., vol. 43, pp. 1192-1194, 2007.
113X. H. Wang, X. L. Wang, C. Feng, C. B. Yang, B. Z. Wang, J. X. Ran, H. L. Xiao, C. M. Wang, and J. X. Wang, “Hydrogen sensors based on AlGaN/AlN/GaN HEMT,” Microelectron. J., vol. 39, pp. 20-23, 2008.
114F. K. Yam and Z. Hassan, “Schottky diode based on porous GaN for hydrogen gas sensing application,” Appl. Surf. Sci., vol. 253, pp. 9525-9528, 2007.
115S. N. Das and A. K. Pal, “Hydrogen sensors based on thin film nanocrystalline n-GaN/Pd Schottky diode,” J. Phys. D: Appl. Phys., vol. 40, pp. 7291-7297, 2007.
116B. S. Kang, R. Mehandru, S. Kim, F. Ren, R. C. Fitch, J. K. Gillespie, N. Moser, G. Jessen, T. Jenkins, R. Dettmer, D. Via, A. Crespo, B. P. Gila, C. R. Abernathy, and S. J. Pearton, “Hydrogen-induced reversible changes in drain current in Sc2O3/AlGaN/GaN high electron mobility transistors,” Appl. Sur. Sci., vol. 84, pp. 4635-4637, 2004.
117Y. Y. Tsai, C. W. Hung, S. I. Fu, P. H. Lai, H. I. Chen, and W. C. Liu, “On the hydrogen sensing properties of a Pt-oxide-In0.5Al0.5P Schottky diode,” Electrochem. Solid State lett, vol. 9, pp. H108-H110, 2006.
118H. I. Chen and Y. I Chou, “Evaluation of the perfection of the Pd-InP Schottky interface from the energy viewpoint of hydrogen adsorbates,” Semicond. Sci. Technol., vol. 19, pp. 39-44, 2004.
119M. A. Khan, X. Hu, G. Sumin, A. Lunev, J. Yang, R. Gaska, and M. S. Shur, “AlGaN/GaN metal oxide semiconductor heterostructure field effect transistor,” IEEE Electron Devices Lett., vol. 21, pp. 63 -65, 2000.
120M. Eriksson, I. Lundström, and L. G. Ekedahl, “A model of the Temkin isotherm behavior for hydrogen adsorption at Pd-SiO2 interfaces,” J. Appl. Phys., vol. 82, pp. 3143-3146, 1997.
121M. Miyoshi, Y. Kuraoka, K. Asai, T. Shibata, and M. Tanaka, “Electrical characteristics of Pt/AlGaN/GaN Schottky diodes grown using AlN template and their application to hydrogen gas sensors,” J. Vac. Sci. Technol. B, vol. 25, pp. 1231-1235, 2007.
122B. S. Kang, S. Kim, F. Ren, B. P. Gila, C. R. Abernathy, and S. J. Pearton, “AlGaN/GaN-based diodes and gateless HEMTs for gas and chemical sensing,” IEEE Sensors J., vol. 5, pp. 677-680, 2005.
123W. C. Liu, K. W. Lin, H. I. Chen, C. K. Wang, C. C. Cheng, S. Y. Cheng, and C. T. Lu, ”A New Pt/Oxide/In0.49Ga0.51P MOS Schottky Diode Hydrogen Sensor,” IEEE Electron Device Lett., vol. 23, pp. 640-642, 2002.
124K. W. Lin, H. I. Chen, C. C. Cheng, H. M. Chuang, C. T. Lu, and W. C. Liu, “Characteristics of a new Pt/Oxide/In0.49Ga0.51P hydrogen-sensing Schottky diode,” Sens. Actuators B, vol. 94, pp. 145-151, 2003.
125Y. Y. Tsai, H. I. Chen, C. W. Humg, T. P. Chen, T. H. Tsai, K. Y. Chu, L. Y. Chen, and W. C. Liu, “A hydrogen gas sensitive Pt-In0.5Al0,5P metal-semiconductor Schottky diode,” J. Electrochem. Society, vol. 154, pp. J357-J361, 2007.
126A. Salomonsson, M. Eriksson, and H. Dannetun, “Hydrogen interaction with platinum and palladium metal-insulator-semiconductor devices,” J. Appl. Phys., vol. 98, Art. No. 014505, 2005.
127H. M. Dannetun, D. Söderberg, I. Lundström, and L. G. Petersson, “The H2-O2 reaction on palladium studied over a large pressure range: independence of the microscopic sticking coefficients on surface condition,” Surf. Sci., vol. 152, pp. 559-568, 1985.
128D. Dwivedi, R. Dwivedi, and S. K. Srivastava, “Sensing properties of palladium-gate MOS (Pd-MOS) hydrogen sensor-based on plasmagrown silicon dioxide,” Sens. Actuators B, vol. 71, pp. 161-168, 2000.
129M. Eriksson and L. G. Ekedahl, “The influence of CO on the response of hydrogen sensitive Pd-MOS devices,” Sens. Actuators B, vol. 42, pp. 217-223, 1997.
130Y. I Chou, C. M. Chen, W. C. Liu, and H. I. Chen, “A new Pd-InP Schottky hydrogen sensor fabricated by electrophoretic deposition with Pd nanoparticles,” IEEE Electron Device Lett., vol. 26, pp. 62-65, 2005.
131C. K. Kim, J. H. Lee, S. M. Choi, I. H. Noh, H. R. Kim, N. I. Cho, C. Hong, and G. E. Jang, “Pd- and Pt-SiC Schottky diodes for detection of H2 and CH4 at high temperature,” Sens. Actuators B, vol. 77, pp. 455-462, 2001.
132H. T. Wang, T. J. Anderson, F. Ren, C. Z. Li, Z. N. Low, J. Lin, B. P. Gila, S. J. Pearton, A. Osinsky, and A. Dabiran, “Robust detection of hydrogen using differential AlGaN/GaN high electron mobility transistor sensing diodes,” Appl. Phys. Lett., vol. 89, Art. No. 242111, 2006.
133R. R. Rye and A. J. Ricco, “Ultrahigh vacuum studies of Pd metal/insulator/ semiconductor diode H2 sensors,” J. Appl. Phys., vol. 62, pp. 1084-1092, 1987.
134J. Fogelberg, M. Eriksson, H. Dannetun, and L. G. Petersson, “Kinetic modeling of hydrogen adsorption/absorption in thin films on hydrogen-sensitive field-effect devices: Observation of large hydrogen-induced dipoles at the Pd-SiO2 interface,” J. Appl. Phys., vol. 78, pp. 988-996, 1995.
135S. W. Tan, W. T. Chen, M. Y. Chu, and W. S. Lour, “Sub-0.5-μm gate doped-channel FETs with HEMT-like channel using thermally re-flowed photo-resist and spin-on-glass,” Semicond. Sci. & Technol., vol. 19, pp. 167-171, 2004.
136Y. J. Li, W. C. Hsu, and S. Y. Wang, “Temperature-dependent characteristics of Al0.2Ga0.8As/In0.22Ga0.78As pseudomorphic DH-MODFET with GaAs/AlGaAs superlattice buffer layer,” J. Vac. Sci. Technol. B, vol. 21, pp. 760-762, 2003.
137D. R. Greenberg, J. A. D.Alamo, J. P. Harbison, and L. T. Florez, “A pseudomorphic AlGaAs/n+-InGaAs metal-insulator-doped channel FET for broad-band, large-signal applications,” IEEE Electron Devices Lett., vol. 12, pp. 436-438, 1991.
138Y. Y. Tsai, K. W. Lin, H. I. Chen, C. T. Lu, H. M. Chuang, C. Y. Chen, C. C. Cheng, and W. C. Liu, “Investigation of hydrogen-sensing properties of Pd/AlGaAs-based Schottky diodes,” IEEE Trans. Electron Devices, vol. 50, pp. 2532-2539, 2003.
139K. W. Lin, H. I. Chen, C. T. Lu, Y. Y. Tsai, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A hydrogen sensing Pd/InGaP metal-semiconductor (MS) Schottky diode hydrogen sensor,” Semicond. Sci. Technol., vol. 18, pp. 615-619, 2003.
140H .I. Chen, Y. I Chou, and C. K. Hsiung, “Comprehensive study of adsorption kinetics for hydrogen sensing with an electroless-plated Pd-InP Schottky diode,” Sens. Actuators B, vol. 92, pp. 6-16, 2003.
141J. W. Medlin, A. E. Lutz, R. Bastasz, and A. H. McDaniel, “The response of palladium metal-insulator-semiconductor devices to hydrogen-oxygen mixtures: comparisons between kinetic models and experiment,” Sens. Actuators B, vol. 96, pp. 290-297, 2003.
142B. D. Kay, C. H. F. Peden, and D. W. Goodman, “Kinetics of hydrogen absorption by Pd (110),” Phys. Rev. B, vol. 34, pp. 817-822, 1986.
143R. C. Hughes, W. K. Schubert, T. E. Zipperian, J. L. Rodriguez, and T. A. Plut, “Thin-film palladium and silver alloys and layers for metal-insulator-semiconductor sensors,” J. Appl. Phys., vol. 62, pp. 1074-1083, 1987.
144R. Mostefaoui, J. Chevallier, A. Jalil, J. C. Pesant, C. W. Tu, and R. F. Kopf, “Shallow donors and D-X centers neutralization by atomic hydrogen in GaAlAs doped with silicon,” J. Appl. Phys., vol. 59, pp. 2821-2827, 1986.
145J. Schalwig, G. Müller, U. Karrer, M. Eickhoff, O. Ambacher, M. Stutzmann, L. Görgens, and G. Dollinger, “Hydrogen response mechanism of Pt-GaN Schottky diodes,” Appl. Phys. Lett., vol. 80, pp. 1222-1224, 2002.
146A. Jalil, J. Chevallier, R. Azoulay and A. Mircea, “Electron mobility studies of the donor neutralization by atomic hydrogen in GaAs doped with silicon,” J. Appl. Phys., vol. 59, pp. 3774-3777, 1986.
147S. J. Pearton, W. C. Dautremont-Smith, J. Chevallier, C. W. Tu, and K. D. Cummings, “Hydrogenation of shallow-donor levels in GaAs,” J. Appl. Phys., vol. 59, pp. 2821-2827, 1986.
148J. Liu, C. Ortiz, Y. Zhang, H. Bakhru, and J. Corbett, “Effects of hydrogen on the barrier height of a titanium Schottky diode on p-type silicon,” Phys. Rev. B, vol. 44, pp. 8918-8924, 1991.
149J. Chevallier, W. C. Dautremont-Smith, C. W. Tu, and S. J. Pearton, “Donor neutralization in GaAs(Si) by atomic hydrogen,” Appl. Phys. Lett., vol. 47, pp. 108-110, 1985.
150A. L. Spetz, D. Scheiβer, A. Baranazahi, B. Wälivaara, W. Göpel, and I. Lundström, “X-ray photoemission and Auger electron spectroscopy analysis of fast responding activated metal oxide silicon carbide gas sensors,” Thin Solid Films, vol. 299, pp. 183-189, 1997.
151L. G. Petersson, H. M. Dannetun, and I. Lundström, “The Water-Forming Reaction on Palladium,” Surf. Sci., vol. 161, pp. 77-100, 1985.
152D. Fillippini and I. Lundström, “Hydrogen detection on bare SiO2 between metal gates,” J. Appl. Phys., vol. 91, pp. 3896-3903, 2002.
153Y. Y. Tsai, K. W. Lin, H. I. Chen, C. T. Lu, H. M. Chuang, C. Y. Chen, and W. C. Liu, “Comparative hydrogen sensing performances of Pd- and Pt-InGaP metal-oxide-semiconductor Schottky diodes,” J. Vac. Sci. Technol. B, vol. 21, pp. 2471-2477, 2003.
154M. Johansson, I. Lundström, and L. G. Ekedahl, “Bridging the pressure gas for palladium metal-insultor-semiconductor hydrogen sensors in oxygen containing environments,” J. Appl. Phys., vol. 84, pp. 44-51, 1998.
155W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, S. Y. Cheng, and K. H. Yu, “Hydrogen-sensing characteristics of a novel Pd/InP MOS Schottky diode hydrogen sensor,” IEEE Trans. Electron Devices, vol. 48, pp. 1938-1944, 2001.
156L. G. Ekedahl, M. Eriksson, and I. Lundström, “Hydrogen sensing mechanisms of metal-insulator interfaces,” Acc. Chem. Res., vol. 31, pp. 249-256, 1998.
157R. C. Hughes, P. A. Taylor, A. J. Ricco, and R. R. Rye, “Kinetics of hydrogen adsorption and absorption: catalytic gate MIS gas sensors on silicon,” J. Electrochem. Soc., vol. 136, pp. 2653-2661, 1989.
158C. Nylander, M. Armgarth, and C. Svensson, “Hydrogen induced drift in palladium gate metal-oxide-semiconductor structures,” J. Appl. Phys., vol. 56, pp. 1177-1188, 1984.
159L. G. Petersson, H. M. Dannetun, J. Fogelberg, and I. Lundström, “Hydrogen adsorption states at the external and internal palladium surfaces of a palladium-silicon dioxide-silicon structure,” J. Appl. Phys., vol. 58, pp. 404-413, 1985.
160W. C. Liu, K. H. Yu, R. C. Liu, K. W. Lin, K. P. Lin, C. H. Yen, C. C. Cheng, and K. B. Thei, “Investigation of temperature-dependent characteristics of an n+-InGaAs/n-GaAs composite doped channel (CDC) heterostructure field-effect transistor,” IEEE Trans. Electron Devices, vol. 48, pp. 2677-2683, 2001.
161C. Z. Wu, L. W. Laih, and W. C. Liu, “Study of InGaAs/GaAs metal-insulator-semiconductor-like heterostructure field-effect transistor,” Solid-State Electron., vol. 39, pp. 791-795, 1996.
162W. S. Lour, W. L. Chang, W. C. Liu, Y. H. Shie, H. J. Pan, J. Y. Chen, and W. C. Wang, “Application of selective removal of mesa sidewalls for high-breakdown and high-linearity Ga0.51In0.49P/In0.15Ga0.85As pseudomorphic transistors,” Appl. Phys. Lett., vol. 74, pp. 2155-2157, 1999.
163W. C. Hsu, H. M. Shieh, C. L. Wu, and T. S. Wu, “A high performance symmetric double δ–doped GaAs/InGaAs/GaAs pseudomorphic HFET’s grown by MOCVD,” IEEE Trans. Electron Devices, vol. 41, pp. 456-457, 1994.
164I. Lundström, S. Shivaraman, C. Svensson, and L. Lundkvist, “A hydrogen-sensitive MOS field effect transistor,” Appl. Phys. Lett., vol. 26, pp. 55-57, 1975.
165M. Peschke, H. Lorenz, H. Riess, and I. Eisele, “Recognition of hydrogen and ammonia by modified gate metallization of the Suspended-gate FET,” Sens. Actuators B, vol. 1, pp. 21-24, 1990.
166P. Bergveld, J. Henddrikse, and W. Olthuis, “Theory and application of the material work function for chemical sensors based on the field effect principle,” Meas. Sci. Technol., vol. 9, pp. 1801-1808, 1998.
167K. Scharnagl, M. Bögner, A. Fuchs, R. Winter, T. Doll, and I. Eisele, “Enhanced roon temperature gas sensing with metal oxides by means of the electroadsorptive effect in hybrid suspended gate FET,” Sens. Actuators B, vol. 57, pp. 35-38, 1999.
168K. Scharnagl, M. Eriksson, A. Karthigeyan, M. Burgmair, M. Zimmer, and I. Eisele, “Hydrogen detection at high concentration with stabilized palladium,” Sens. Actuators B, vol. 78, pp. 138-143, 2001.
169Z. Gergintschew, P. Kornetzky, and D. Schipanski, “The capacitively controlled field effect transistor (CCFET) as a new low power gas sensor,” Sens. Actuators B, vol. 36, pp. 285-289, 1996.
170R. P. Gupta, Z. Gergintschew, D. Schipanski, and P. D. Vyas, “YBCO-FET room temperature ammonia sensor,” Sens. Actuators B, vol. 63, pp. 35-41, 2000.
171Y. Y. Tsai, C. W. Hung, K. W. Lin, P. H. Lai, S. I Fu, H. M. Chuang, H. I. Chen, and W. C. Liu, “On a GaAs-based transistor-type hydrogen sensing detector with a Pd/Al0.24Ga0.76As metal-semiconductor Schottky gate,” Semicond. Sci. Technol., vol. 21, pp. 221-227, 2006.
172Y. R. Yuan, K. Mohammed, M. A. A. Pudensi, and James L. Merz, “Effects of carrier confinement in graded AlGaAs/GaAs heterojunctions,” Appl. Phys. Lett., vol. 45, pp. 739-741, 1984.
173S. W. Tan, H. R. Chen, A. H. Lin, W. T. Chen, and W. S. Lour, “Experiments and modelling of double-emitter HPTs with different emitter-area ratios for functional applications,” Semicond. Sci. Technol., vol. 19, pp. 1213-1219, 2004.
174D. F. Guo, J. Y. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “Characteristics of a new BBOS with an AlGaAs-δ(n+)-GaAs-InAlGaP collector structure,” IEEE Trans. Electron Devices, vol. 51, pp. 542-547, 2004.
175T. Egawa, Y. Murata, T. Jimbo, and M. Umeno, “Characterization of AlGaAs/GaAs vertical-cavity surface-emitting laser diode grown on Si substrate by MOCVD,” Appl. Surf. Sci., vol. 117, pp. 771-775, 1997.
176W. Liu, “Failure mechanisms in AlGaAs/GaAs power heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 43, pp. 220-227, 1996.
177W. C. Liu, W. L. Chang, W. S. Lour, H. J. Pan, W. C. Wang, J. Y. Chen, K. H. Yu, and S. C. Feng, “High-performance InGaP/InxGa1-xAs HEMT with an inverted delta-doped V-shaped channel structure,” IEEE Electron Devices Lett., vol. 20, pp. 548-550, 1999.
178Y. Fu, T. H. Wang, and M. Willander, “Designing two-dimensional electron gases in GaAs/InGaAs/AlGaAs, delta-doped AlGaAs/GaAs, and AlGaAs/InGaAs/GaAs heterostructures for single electron transistor application,” J. Appl. Phys., vol. 89, pp. 1759-1763, 2001.
179C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, H. M. Chuang, C. Y. Chen, and W. C. Liu, “Hydrogen sensing characteristics of Pd- and Pt-Al0.3Ga0.7As metal-semiconductor (MS) Schottky diodes,” Semicond. Sci. Technol., vol. 19, pp. 778-782, 2004.
180C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, C. W. Hong, and W. C. Liu, “Temperature-dependent hydrogen sensing characteristics of a Pd/oxide/Al0.24Ga0.76As high electron mobility transistor (HEMT),” Electron. Lett., vol. 40, pp. 1608-1609, 2004.
181Y. Y. Tsai, C. C. Cheng, P. H. Lai, S. I Fu, C. W. Hung, H. I. Chen, and W. C. Liu, “Comprehensive study of hydrogen sensing characteristics of Pd metal-oxide-semiconductor (MOS) transistors with Al0.24Ga0.76As and In0.49Ga0.51P Schottky contact layers,” Sens. Actuators B, vol. 120, pp. 687-693, 2007.
182A. Baranzahi, A. L. Spetz, and I. Lundström, “Reversible hydrogen annealing of metal-oxide-silicon carbide devices at high temperatures,” Appl. Phys. Lett., vol. 67, pp. 3203-3205, 1995.
183C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, C. H. Hong, and W. C. Liu, “Characteristics of a Pd–oxide–In0.49Ga0.51P high electron mobility transistor (HEMT)-based hydrogen sensor,” Sens. Actuators B, vol. 113, pp. 29-35, 2006.
184O. Brand, “Microsensor integration into systems-on-chip,” Proc. IEEE, vol. 94, pp. 1160-1176, 2006.
185C. Hagleitner, A. Hierlemann, D. Lange, A. Kummer, N. Kerness, O. Brand, and H. Baltes, “Smart single-chip gas sensor microsystem,” Nature, vol. 414, pp. 293-296, 2001.
186A. Baschirotto, S. Capone, A. D’ Amico, C. Di Natale, V. Ferragina, G. Ferri, L. Francioso, M. Grassi, N. Guerrini, P. Malcovati, E. Martinelli, and P. Siciliano, “A portable integrated wide-range gas sensing system with smart A/D front-end,” Sens. Actuators B, vol. 130, pp. 164-174, 2008.
187G. Ferri, V. Stornelli, A. D. Marcellis, A. Flammini, and A. Depari, “Novel CMOS fully integrable interface for wide-range resistive sensor arrays with parasitic capacitance estimation,” Sens. Actuators B, vol. 130, pp. 207-215, 2008.
188G. Barillaro, P. Bruschi, F. Pieri, and L. M. Strambini, “CMOS-compatible fabrication of porous silicon gas sensors and their readout electronics on the same chip,” Phys. Stat. Sol., vol. 204, pp. 1423-1428, 2007.
189M. Grassi, P. Malcovati, and A. Baschirotto, “A 160 dB equivalent dynamic range auto-scaling interface for resistive gas sensors arrays,” IEEE J. Solid-State Circuits, vol. 42, pp. 518-528, 2007.
190C. H. Mastrangelo and R. S. Muller, “Microfabricated thermal absolute-pressure sensor with on-chip digital front-end processor,” IEEE J. Solid-State Circuits, vol. 26, pp. 1998-2007, 1991.
191S. A. Bota, A. Dieguez, J. L. Merino, R. Casanova, J. Samitier and C. Cane, “A monolithic interface circuit for gas sensor arrays: control and measurement,” Analog Integr. Circ. Sig. Process., vol. 40, pp. 175-184, 2004.
192P. Robogiannakis, S. Chatzandroulis, and C. Tsamis, “Integrated circuit interface for metal oxide chemical sensor arrays,” Sens. Actuators A, vol. 132, pp. 252-257, 2006.
193P. Bruschi, D. Navarrini, and M. Piotto, “A closed-loop mass flow controller based on static solid-state devices,” J. Microelectromech. Syst., vol. 15, pp. 652-658, 2006.
194C. Vančura, M. Rüegg, Y. Li, C. Hagleitner, and A. Hierlemann, “Magnetically actuated complementary metal oxide semiconductor resonant cantilever gas sensor systems,” Anal. Chem., vol. 77, pp. 2690-2699, 2005.
195J. L. Merino, S. A. Bota, R. Casanova, A. Dieguez, C. Cane, and J. Samitier, “A reusable smart interface for gas sensor resistance measurement,” IEEE Trans. Instrum. Meas., vol. 53, pp. 1173-1178, 2004.
196C. Zhang, A. Srivastava, and P. K. Ajmera, “A 0.8 V CMOS amplifier design,” Analog Integr. Circ. Sig. Process., vol. 47, pp. 315-321, 2004.
197T. Lehmann and M. Cassia, “1-V power supply CMOS cascode amplifier,” IEEE J. Solid-State Circuits, vol. 36, pp. 1082-1086, 2001.
198R. K. Sharma, P. C.H. Chan, Z. Tang, G. Yan, I. M. Hsing, J. K.O. Sin, “Investigation of stability and reliability of tin oxide thin-film for integrated micro-machined gas sensor devices,” Sens. Actuators B, vol. 81, pp. 9-16, 2001.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊