|
1F. DiMeo Jr., I. S. Chen, P. Chen, J. Neuner, A. Roerhl, and J. Welch, “MEMS-based hydrogen gas sensors,” Sens. Actuators B, vol. 117, pp. 10-16, 2006. 2P. Ripka, J. Kubik, M. Duffy, W. G. Hurley, and S. O’Reilly, “Current sensor in PCB technology,” Sensors, 2002 Proceedings of IEEE, vol. 2, pp. 779-784, 2002. 3J. P. Sullivan, T. A. Friedmann, and K. Hjort, “Diamond and amorphous MEMS,” MRS Bull., vol. 26, pp. 309-311, 2001. 4P. Tobias, A. Baranzahi, A. L. Spetz, O. Kordina, E. Janzén, and I. Lundström, “Fast chemical sensing with metal-insulator silicon carbide structures,” IEEE Trans. Electron Device Lett., vol. 18, pp. 287-289, 1997. 5P. T. Moseley, “Solid state gas sensors,” Meas. Sci. Technol., vol. 8, pp. 223-237, 1997. 6G. J. Maclay, W. J. Buttner, and J. R. Stetter, “Microfabricated amperometric gas sensors,” IEEE Trans. Electron Devices, vol. 35, pp. 793-799, 1988. 7S. R. Morrison, “Semiconductor gas sensors,” Sens. Actuators, vol. 2, pp. 329-341, 1982. 8D. K. Ross, “Hydrogen storage: The major technological barrier to the development of hydrogen fuel cell cars,” Vacuum, vol. 80, pp. 1084-1089, 2006. 9M. Z. Jacobson, W. G. Colella, and D. M. Golden, “Cleaning the air and improving health with hydrogen fuel-cell vehicles,” Science, vol. 308, pp. 1901-1905, 2005. 10G. J. K. Acres, “Recent advances in fuel cell technology and its applications,” J. Power Sources, vol. 100, pp. 60-66, 2001. 11W. Peschka, “Hydrogen: The future cryofuel in internal combustion engines,” Int. J. Hydrogen Energy, vol. 23, pp. 27-43, 1998. 12P. Van Blarigan and J. O. Keller, “A hydrogen fuelled internal combustion engines designed for single speed/power operation,” Int. J. Hydrogen Energy, vol. 23, pp. 603-609, 1998. 13R. L. David, CRC Handbook of Chemistry and Physics – 79th ed., CRC-Press Taylor & Francis Group, 1998. 14A. Mandelis and C. Christofides, Physics, Chemistry and Technology of Solid State Gas Sensor Devices – 1st ed., John Willey & Sons, Inc., 1993. 15C. Christofides and A. Mandelis, “Solid-state sensors for trace hydrogen gas detection,” J. Appl. Phys., vol. 68, pp. R1-R30, 1990. 16N. Graber, H. Lüdi, and H. M. Widmer, “The use of chemical sensors in indstury,” Sens. Actuators B, vol. 1, pp. 239-243, 1990. 17W. Ruihua and T. A. Jones, “The characteristics of gas-sensitive multilayer devices based on lead phthalocyanine,” Sens. Actuators B, vol. 2, pp. 33-42, 1990. 18N. Miura, H. Kaneko, and N. Yamazoe, “A four-probe type gas sensor using a solid-state proton conductor sensitive to hydrogen at room temperature,” J. Electrochem. Soc., vol. 134, pp. 1875-1876, 1987. 19T. L. Fare, I. Lundström, J. N. Zemel, and A. Feygenson, “Reversible neutralization of boron acceptors by hydrogen in Pd-SiO2-Si capacitors,” Appl. Phys. Lett., vol. 48, pp. 632-634, 1986. 20Y. K. Jun, H. S. Kim, J. H. Lee, and S. H. Hong, “High H2 sensing behavior of TiO2 films formed by thermal oxidation,” Sens. Actuators B, vol. 107, pp. 264-270, 2005. 21N. S. Baik, G. Sakai, N. Miura, and N. Yamazoe, “Hydrothermally treated sol solution of tin oxide for thin-film gas sensor,” Sens. Actuators B, vol. 63, pp. 74-79, 2000. 22H. I. Chen, C. K. Hsiung, and Y. I Chou, “Characteristics of Pd-GaAs Schottky diodes prepared by the electroless plating technique,” Semicond. Sci. Technol., vol. 18, pp. 620-626, 2003. 23C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, C. W. Hung, R. C. Liu, and W. C. Liu, “Pd-oxide-Al0.24Ga0.76As (MOS) high electron mobility transistor (HEMT)-based hydrogen sensor,” IEEE Sensors J., vol. 6, pp. 287-292, 2006. 24D. Briand, H. Sunddrgen, B. van der Schoot, I. Lundström, and N. F. de. Rooij, “Thermally isolated MOSFET for gas sensing application,” IEEE Electron Devices Lett., vol. 22, pp. 11-13, 2001. 25H. Seo, T. Endoh, H. Fukuda, and S. Nomura, “Highly sensitive MOSFET gas sensors with porous platinum gate electrode,” Electron. Lett., vol. 33, pp. 535-536, 1997. 26A. Baranzahi, A. L. Spetz, B. Andersson, and I. Lundström, “Gas sensitive field effect devices for high temperatures,” Sens. Actuators B, vol. 26, pp. 165-169, 1995. 27Y. K. Fang, S. B. Hwang, C. Y. Lin, and C. C. Lee, “Trench Pd/Si metal-oxide-semiconductor Schottky barrier diode for a high sensitivity hydrogen gas sensor,” Appl. Phys. Lett., vol. 57, pp. 2686-2688, 1990. 28K. Tajima, Y. Choi, W. Shin, N. Izu, I. Matsubara, and N. Murayama, “Micro-thermoelectric hydrogen sensors with Pt film and Pt/alumina thick film catalysts,” J. Electrochem. Soc., vol. 153, pp. H58-H62, 2006. 29J. M. Smulko, J. Ederth, Y. F. Li, L. B. Kish, M. K. Kennedy, and F. E. Kruis, “Gas sensing by thermoelectric voltage fluctuations in SnO2 nanoparticle films,” Sens. Actuators B, vol. 106, pp. 708-712, 2005. 30N. Maffei and A. K. Kuriakose, “A solid-state potentiometric sensor for hydrogen detection in air,” Sens. Actuators B, vol. 98, pp. 73-76, 2004. 31N. Miura, T. Harada, and N. Yamazoe, “Sensing characteristics and working mechanism of four-probe type solid-state hydrogen sensor using proton conductor,” J. Electrochem. Soc., vol. 136, pp. 1215-1219, 1989. 32J. Villatoro, D. Luna-Moreno, and D. Monzon-Hernandez, “Optical fiber hydrogen sensor for concentrations below the lower explosive limit,” Sens. Actuators B, vol. 110, pp. 23-27, 2005. 33S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuators B, vol. 108, pp. 508-514, 2005. 34J. A. Thiele and M. Pereira da Cunha, “High temperature LGS SAW gas sensor,” Sens. Actuators B, vol. 113, pp. 816-822, 2006. 35S. J. Ippolito, S. Kandasamy, K. Kalntar-Zadeh, A. Trinchi, and W. Wlodarski, “Layered SAW ZnO/LiTaO3 structure using WO3 selective layer for hydrogen sensing,” Sensor Lett., vol. 1, pp. 33-36, 2003. 36J. Sippel-Oakley, H. T. Wang, B. S Kang, Z. C. Wu, F. Ren, A. G Rinzler, and S. J Pearton, “Carbon nanotube films for room temperature hydrogen sensing,” Nanotechnology, vol. 16, pp. 2218-2221, 2005. 37Y. M. Wang, W. P. Kang, J. L. Davidson, A. Wisitsora-at, and K. L. Soh, “A novel microelectronic gas sensor utilizing carbon nanotubes for hydrogen gas detection,” Sens. Actuators B, vol. 93, pp. 327-332, 2003. 38Y. I Chou, H. C. Chiang, and C. C. Wang, “Study on Pd functionalization of microcantilever for hydrogen detection promotion,” Sens. Actuators B, vol. 129, pp. 72-78, 2008. 39D. R. Baselt, B. Fruhberger, E. Klaassen, S. Cemalovic, C. L. Britton Jr., S. V. Patel, T. E. Mlsna, D. McCorkle, and B. Warmack, “Design and performance of a microcantilever-based hydrogen sensor,” Sens. Actuators B, vol. 88, pp. 120-131, 2003. 40M. Schreiter, R. Gabl, J. Lerchner, C. Hohlfeld, A. Delan, G. Wolf, A. Bluher, B. Katzschner, M. Mertig, and W. Pompe, “Functionalized pyroelectric sensors for gas detection,” Sens. Actuators B, vol. 119, pp. 255-261, 2006. 41A. Mandelis and C. H. Wang, “A novel PVDF thin-film photopyroelectric thermal-wave interferometry,” Ferroelectrics, vol. 236, pp. 235-246, 2000. 42U. Schlecht, K. Balasubramanian, M. Burghard, and K. Kern, “Electrochemically decorated carbon nanotubes for hydrogen sensing,” Appl. Sur. Sci., vol. 253, pp. 8394-8397, 2007. 43B. J. Lutz, Z. H. Fan, T. Burgdorf, and B. Frieldrich, “Hydrogen sensing by enzyme-catalyzed electrochemical detection,” Anal. Chem., vol. 77, pp. 4969-4975, 2005. 44F. I. Bohrer, A. Sharoni, C. Colesniuc, J. Park, I. K. Schuller, A. C. Kummel, and W. C. Trogler, “Gas sensing mechanism in chemiresistive cobalt and metal-free phthalocyanine thin films,” J. Am. Chem. Soc., vol. 129, pp. 5640-5646, 2007. 45T. Xu, M. P. Zach, Z. L. Xiao, D. Rosenmann, U. Welp, W. K. Kwok, and G. W. Crabtree, “Self-assembled monolayer-enhanced hydrogen sensing with ultrathin palladium films,” Appl. Phys. Lett., vol. 86, Art. No. 203104, 2005. 46H. J. Pan, K. W. Lin, K. H. Yu, C. C. Cheng, K. B. Thei, W. C. Liu, and H. I. Chen, “Highly hydrogen-sensitive Pd/InP metal-oxide-semiconductor Schottky diode hydrogen sensor,” Electron. Lett., vol. 38, pp. 92-94, 2002. 47C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, and W. C. Liu, “Hydrogen sensing properties of a Pt-oxide-Al0.24Ga0.76As high-electron-mobility transistor,” Appl. Phys. Lett., vol. 86, Art. No. 112103, 2005. 48I. Lundström, “Hydrogen sensitive MOS-structures Part 1: principles and applications,” Sens. Actuators, vol. 1, pp. 403-426, 1981. 49I. Lundström and D. Söderberg, “Hydrogen sensitive MOS-structures Part 2: characterization,” Sens. Actuators, vol. 2, pp. 105-138, 1982. 50Y. Yokosawa, K. Saitoh, S. Nakano, Y. Goto, and K. Tsukada, “FET hydrogen-gas sensor with direct heating of catalytic metal,” Sens. Actuators B, vol. 130, pp. 94-99, 2008. 51H. Hasegawa and M. Akazawa, “Mechanism and control of current transport in GaN and AlGaN Schottky barriers for chemical sensor,” Appl. Sur. Sci., vol. 254, pp. 3653-3666, 2008. 52N. Tasaltin, F. Dumludag, M. A. Ebeoglu, H. Yuzer, and Z. Z. Ozturk, “Pd/native nitride/n-GaAs structure as hydrogen sensors,” Sens. Actuators B, vol. 130, pp. 59-64, 2008. 53S. Nakagomi, T. Shida, H. Hoshi, and Y. Kokubun, “Field-effect hydrogen sensor device with floating gate exhibiting unique behavior,” Sens. Actuators B, vol. 125, pp. 408-414, 2007. 54T. Yamaguchi, T. Kiwa, K. Tsukada, and K. Yokosawa, “Oxygen interference mechanism of platinum-FET hydrogen gas sensor,” Sens. Actuators A, vol. 136, pp. 244-248, 2007. 55V. I. Filippov, A. A. Vasiliev, W. Moritz, and J. Szeponik, “Room-temperature hydrogen sensitivity of a MIS-structure based on the Pt/LaF3 interface,” IEEE Sensors J., vol. 6, pp. 1250-1255, 2006. 56S. Roy, C. Jacob, and S. Basu, “Studies on Pd/3C-SiC Schottky junction hydrogen sensors at high temperature,” Sens. Actuators B, vol. 94, pp. 298-303, 2003. 57H. I. Chen, Y. I Chou, and C. Y. Chu, “A novel high-sensitive Pd/InP hydrogen sensor fabricated by electroless plating,” Sens. Actuators B, vol. 85, pp. 10-18, 2002. 58K. W. Lin, C. C. Cheng, S. Y. Cheng, K. H. Yu, C. K. Wang, H. M. Chuang, J. Y. Chen, C. Z. Wu, and W. C. Liu, “A novel Pd/Oxide/GaAs metal-insulator-semiconductor field-effect transistor (MISFET) hydrogen sensor,” Semicond. Sci. Technol., vol. 16, pp. 997-1001, 2001. 59B. I. Podlepetskii, M. Y. Nikiforova, and S. V. Gumenyuk, “Stability investigation of the characteristics of integral hydrogen sensors,” Instrum. Exp. Tech., vol. 44, pp. 257-258, 2001. 60V. G. Litovchenko, T. I. Gorbanyuk, A. A. Efremov, and A. A. Evtukh, “Effect of macrostructure and composition of the top metal electrode on properties of MIS gas sensors,” Microelectronics Reliability, vol. 40, pp. 821-824, 2000. 61D. V. Kerns, W. P. Kang, J. L. Davidson, Q. Zhou, Y. Gurbuz, and S. E. Kerns, “Total-dose radiation-hard diamond-based hydrogen sensor,” IEEE Trans. Nucl. Sci., vol. 45, pp. 2799-2804, 1998. 62S. J. Gentry and T. A. Jones, “The role of catalysis in solid-state gas sensors,” Sens. Actuators, vol. 10, pp. 141-163, 1986. 63D. Kohl, “The role of noble-metals in the chemistry of solid-state gas sensors,” Sens. Actuators B, vol. 1, pp. 158-165, 1990. 64B. Keramati and J. N. Zemel, “Pd-thin-SiO2-Si diode. I. Isothermal variation of H2-induced interfacial trapping states,” J. Appl. Phys., vol. 53, pp. 1091-1099, 1982. 65B. Keramati and J. N. Zemel, “Pd-thin-SiO2-Si diode. II. Theoretical modeling and the H2 response,” J. Appl. Phys., vol. 53, pp. 1100-1114, 1982. 66M. Ali, V. Cimalla, V. Lebedev, H. Romanus, V. Tilak, D. Merfeld, P. Sandvik, and O. Ambacher, “Pt/GaN Schottky diodes for hydrogen gas sensors,” Sens. Actuators B, vol. 113, pp. 797-804, 2006. 67C. K. Kim, J. H. Lee, Y. H. Lee, N. I. Cho, and D. J. Kim, “A study on a platinum-silicon carbide Schottky diode as a hydrogen gas sensor,” Sens. Actuators B, vol. 66, pp. 116-118, 2000. 68L. Y. Chen, G. W. Hunter, P. G. Neudeck, G. Bansal, J. B. Petit, and D. Knight, “Comparison of interfacial and electronic properties of annealed Pd/SiC and Pd/SiO2/SiC Schottky diode sensors,” J. Vac. Sci. Technol A, vol. 15, pp. 1228-1234, 1997. 69P. F. Ruths, S. Ashok, S. J. Fonash, and J. M. Ruths, “A study of Pd/Si MIS Schottky barrier diode hydrogen detector,” IEEE Trans. Electron Devices, vol. 28, pp. 1003-1009, 1981. 70T. L. Poteat and B. Lalevic, “Pd-MOS hydrogen and hydrocarbon sensor device,” IEEE Electron Devices Lett., vol. 2, pp. 32-34, 1981. 71H. I. Chen and Y. I Chou, “A comparative study of hydrogen sensing performances between electroless plated and thermal evaporated Pd/InP Schottky diodes,” Semicond. Sci. Technol., vol. 18, pp. 104-110, 2003. 72M. Yousuf, B. Kuliyev, and B. Lalevic, “Pd-InP Schottky diode hydrogen sensors,” Solid-State Electron., vol. 25, pp. 753-758, 1982. 73A. Salehi, A. Nikfarjam, and D. J. Kalantari, “Pd/porous-GaAs Schottky contact for hydrogen sensing application,” Sens. Actuators B, vol. 113, pp. 419-427, 2006. 74W. P. Kang and Y. Gürbüz, “Comparison and analysis of Pd- and Pt-GaAs Schottky diodes for hydrogen detection,” J. Appl. Phys., vol. 75, pp. 8175-8181, 1994. 75N. Yamamoto, S. Tonomura, T. Matsuoka, and H. Tsubomura, “Effect of various substrates on the hydrogen sensitivity of palladium-semiconductor diodes,” J. Appl. Phys., vol. 52, pp. 6227-6230, 1981. 76K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, C. T. Lu, C. C. Cheng, and W. C. Liu, “Characteristics of Pd/InGaP Schottky diodes hydrogen sensors,” IEEE Sensors J., vol. 4, pp. 72-79, 2004. 77C. T. Lu, K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A new Pd-oxide-Al0.3Ga0.7As MOS hydrogen sensor,” IEEE Electron Devices Lett., vol. 24, pp. 390-392, 2003. 78J. Schalwig, G. Muller, M. Eickhoff, O. Ambacher, and M. Stutzmann, “Group III-nitride-based gas sensors for combustion monitoring,” Mater. Sci. Emg. B, vol. 93, pp. 207-214, 2002. 79B. P. Luther, S. D. Wolter, and S. E. Mohney, “High temperature Pt Schottky diode gas sensors on n-type GaN,” Sens. Actuators B, vol. 56, pp. 164-168, 1999. 80J. H. Song, W. Lu, J. S. Flynn, and G. R. Brandes, “AlGaN/GaN Schottky diode hydrogen sensor performance at high temperatures with different catalytic metals,” Solid-State Electron., vol. 49, pp. 1330-1334, 2005. 81K. Matsuo, N. Negoro, J. Kotani, T. Hashizume, and H. Hasegawa, “Pt Schottky diode gas sensors formed on GaN and AlGaN/GaN heterostructure,” Appl. Surf. Sci., vol. 244, pp. 273-276, 2005. 82Y. Oda, H. Yokoyama, K. Kurishima, T. Kobayashi, N. Watanabe, and M. Uchida, “Improvement of current gain of C-doped GaAsSb-base heterojunction bipolar transistors by using an InAlP emitter,” Appl. Phys. Lett., vol. 87, Art. No. 023503, 2005. 83H. Sugiyama, H. Yokoyama, H. Matsuzaki, T. Enoki, and T. Kobayashi, “Metal-organic vapor-phase epitaxy of pseudomorphic InAlP/InGaAs high electron mobility transistor wafers,” Jpn. J. Appl. Phys., vol. 44, pp. 3798-3802, 2005. 84S. Kandasamy, A. Trinchi, W. Wlodarski, E. Comini, and G. Sberveglieri, “Hydrogen and hydrocarbon gas sensing performance of Pt/WO3/SiC MROSiC devices,” Sens. Actuators B, vol. 111-112, pp. 111-116, 2005. 85W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, and C. K. Wang, “Comparative hydrogen-sensing study of Pd/GaAs and Pd/InP metal-oxide-semiconductor Schottky diodes,” Jpn. J. Appl. Phys., vol. 40, pp. 6254-6259, 2001. 86N. Newman, W. E. Spicer, T. Kendelewicz, and I. Lindua, “On the Fermi level pinning behavior of metal/III-V semiconductor interfaces,” J. Vac. Sci. Technol. B, vol. 4, pp. 931-938, 1986. 87N. Yamazoe and N. Miura, “Development of gas sensors for environmental protection,” Packing Manufacturing Technol. Park A, vol. 18, pp. 252-256, 1995. 88T. L. Poteat, B. Lalevic, B. Kuliyev, M. Yousuf, and M. Chen, “MOS and Schottky diode gas sensors using transition metal electrodes,” J. Electron. Mat., vol. 12, pp. 181-214, 1983. 89W. Henrion, M. Rebien, H. Angermann, and A. Roseler, “Spectroscopic investigation of hydrogen termination, oxide coverage, roughness, and surface state density of silicon during native oxidation in air,” Appl. Surf. Sci., vol. 202, pp. 199-205, 2002. 90R. Loloee, B. Chorpening, S. Beer, and R. N. Ghosh, “Hydrogen monitoring for power plant applications using SiC sensors,” Sens. Actuators B, vol. 129, pp. 200-210, 2008. 91S. M. Sze, Semiconductor Devices: Physics and Technology – 2nd ed., John Willey & Sons, Inc., 1985. 92C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, C. T. Lu, and W. C. Liu, “Hydrogen sensing characteristics of a Pt-oxide-Al0.3Ga0.7As MOS Schottky diode,” Sens. Actuators B, vol. 99, pp. 425-430, 2004. 93J. H. Song, W. Lu, J. S. Flynn, and G. R. Brandes, “Pt-AlGaN/GaN Schottky diodes operated at 800oC for hydrogen sensing,” Appl. Phys. Lett., vol. 87, Art. No. 133501, 2005. 94L. M. Lechuga, A. Calle, D. Golmayo, P. Tejedor, and F. Briones, “Hydrogen sensor based on a Pt/GaAs Schottky diode,” Sens. Actuators B, vol. 4, pp. 515-518, 1991. 95D. A. Neamen, Semiconductor Physics and Devices – 3rd ed., McGraw-Hill Companies, Inc., 2003. 96D. V. Lang, H. G. Grimmeiss, E. Meijer, and M. Jaros, “Complex nature of gold-related deep levels in silicon,” Phys. Rev. B, vol. 22, pp. 3917-3934, 1980. 97G. M. Martin, A. Mitonneau, and A. Mircea, “Electron traps in bulk and epitaxial GaAs crystals,” Electron. Lett., vol. 13, pp. 191-193, 1977. 98I. Lundström and L. G. Petersson, “Chemical sensors with catalytic metal gates,” J. Vac. Sci. Technol. A, vol. 14, pp. 1539-1545, 1996. 99M. Eriksson and L. G. Ekedahl, “Hydrogen adsorption states at the Pd/SiO2 interface and simulation of the response of a Pd metal-oxide-semiconductor hydrogen sensors,” J. Appl. Phys., vol. 83, pp. 3947-3951, 1998. 100R. J. Silbey and R. A. Alberty, Physical Chemistry - 3rd ed., John Willey & Sons, Inc., 2001. 101J. Fogelberg and L. G. Petersson, “Kinetic modeling of the H2-O2 reaction on Pd and of its influence on the hydrogen response of a hydrogen sensitive Pd metal-oxide-semiconductor device,” Surf. Sci., vol. 350, pp. 91-102, 1996. 102H. W. Jang and J. L. Lee, “Enhancement of electroluminescence in GaN-based light-emitting diodes using an efficient current blocking layer,” J. Vac. Sci. Technol. B, vol. 23, pp. 2284-2287, 2005. 103K. H. Kim, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “III-nitride ultraviolet light-emitting diodes with delta doping,” Appl. Phys. Lett., vol. 83, pp. 566-568, 2003. 104T. M. Smeeton, V. Bousquet, S. E. Hooper, M. Kauer, and J. Heffernan, “Atomic force microscopy analysis of cleaved facets in III-nitride laser diodes grown on free-standing GaN substrates,” Appl. Phys. Lett., vol. 88, Art. No. 041910, 2006. 105C. Skierbiszewski, P. Perlin, I. Grzegory, Z. R. Wasilewski, M. Siekacz, A. Feduniewicz, P. Wisniewski, J. Borysiuk, P. Prystawko, G. Kamler, T. Suski, and S. Porowski, “High power blue-violet InGaN laser diodes grown on bulk GaN substrates by plasma-assisted molecular beam epitaxy,” Semicond. Sci. Technol., vol. 20, pp. 809-813, 2005. 106H. Morkoc, A. Di Carlo, and R. Cingolani, “GaN-based modulation doped FETs and UV detectors,” Solid-State Electron., vol. 46, pp. 157-202, 2002. 107M. Razeghi and Rogalski, “Semiconductor ultraviolet detectors,” J. Appl. Phys., vol. 79, pp. 7433-7473, 1996. 108T. Palacios, A. Chakraborty, S. Rajan, C. Poblenz, S. Keller, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “High-power AlGaN/GaN HEMTs for Ka-band applications,” IEEE Electron Devices Lett., vol. 26, pp. 781-783, 2005. 109Y. C. Chang, K. Y. Tong, and C. Surya, “Numerical simulation of current-voltage characteristics of AlGaN/GaN HEMTs at high temperatures,” Semicond. Sci. Technol., vol. 20, pp. 188-192, 2005. 110A. Chini, J. Wittich, S. Heikman, S. Keller, S. P. DenBaars, and U. K. Mishra, “Power and linearity characteristics of GaN MISFETs on sapphire substrate,” IEEE Electron Devices Lett., vol. 25, pp. 55-57, 2004. 111C. Gaquiere, S. Trassaert, B. Boudart, and Y. Crosnier, “High-power GaN MESFET on sapphire substrate,” IEEE Microwave Guided Wave Lett., vol. 10, pp. 19-20, 2000. 112Y. Y. Tsai, K. W. Lin, H. I. Chen, C. W. Hung, T. P. Chen, and W. C. Liu, “Hydrogen sensing performance of Pt-oxide-GaN Schottky diode,” Electron. Lett., vol. 43, pp. 1192-1194, 2007. 113X. H. Wang, X. L. Wang, C. Feng, C. B. Yang, B. Z. Wang, J. X. Ran, H. L. Xiao, C. M. Wang, and J. X. Wang, “Hydrogen sensors based on AlGaN/AlN/GaN HEMT,” Microelectron. J., vol. 39, pp. 20-23, 2008. 114F. K. Yam and Z. Hassan, “Schottky diode based on porous GaN for hydrogen gas sensing application,” Appl. Surf. Sci., vol. 253, pp. 9525-9528, 2007. 115S. N. Das and A. K. Pal, “Hydrogen sensors based on thin film nanocrystalline n-GaN/Pd Schottky diode,” J. Phys. D: Appl. Phys., vol. 40, pp. 7291-7297, 2007. 116B. S. Kang, R. Mehandru, S. Kim, F. Ren, R. C. Fitch, J. K. Gillespie, N. Moser, G. Jessen, T. Jenkins, R. Dettmer, D. Via, A. Crespo, B. P. Gila, C. R. Abernathy, and S. J. Pearton, “Hydrogen-induced reversible changes in drain current in Sc2O3/AlGaN/GaN high electron mobility transistors,” Appl. Sur. Sci., vol. 84, pp. 4635-4637, 2004. 117Y. Y. Tsai, C. W. Hung, S. I. Fu, P. H. Lai, H. I. Chen, and W. C. Liu, “On the hydrogen sensing properties of a Pt-oxide-In0.5Al0.5P Schottky diode,” Electrochem. Solid State lett, vol. 9, pp. H108-H110, 2006. 118H. I. Chen and Y. I Chou, “Evaluation of the perfection of the Pd-InP Schottky interface from the energy viewpoint of hydrogen adsorbates,” Semicond. Sci. Technol., vol. 19, pp. 39-44, 2004. 119M. A. Khan, X. Hu, G. Sumin, A. Lunev, J. Yang, R. Gaska, and M. S. Shur, “AlGaN/GaN metal oxide semiconductor heterostructure field effect transistor,” IEEE Electron Devices Lett., vol. 21, pp. 63 -65, 2000. 120M. Eriksson, I. Lundström, and L. G. Ekedahl, “A model of the Temkin isotherm behavior for hydrogen adsorption at Pd-SiO2 interfaces,” J. Appl. Phys., vol. 82, pp. 3143-3146, 1997. 121M. Miyoshi, Y. Kuraoka, K. Asai, T. Shibata, and M. Tanaka, “Electrical characteristics of Pt/AlGaN/GaN Schottky diodes grown using AlN template and their application to hydrogen gas sensors,” J. Vac. Sci. Technol. B, vol. 25, pp. 1231-1235, 2007. 122B. S. Kang, S. Kim, F. Ren, B. P. Gila, C. R. Abernathy, and S. J. Pearton, “AlGaN/GaN-based diodes and gateless HEMTs for gas and chemical sensing,” IEEE Sensors J., vol. 5, pp. 677-680, 2005. 123W. C. Liu, K. W. Lin, H. I. Chen, C. K. Wang, C. C. Cheng, S. Y. Cheng, and C. T. Lu, ”A New Pt/Oxide/In0.49Ga0.51P MOS Schottky Diode Hydrogen Sensor,” IEEE Electron Device Lett., vol. 23, pp. 640-642, 2002. 124K. W. Lin, H. I. Chen, C. C. Cheng, H. M. Chuang, C. T. Lu, and W. C. Liu, “Characteristics of a new Pt/Oxide/In0.49Ga0.51P hydrogen-sensing Schottky diode,” Sens. Actuators B, vol. 94, pp. 145-151, 2003. 125Y. Y. Tsai, H. I. Chen, C. W. Humg, T. P. Chen, T. H. Tsai, K. Y. Chu, L. Y. Chen, and W. C. Liu, “A hydrogen gas sensitive Pt-In0.5Al0,5P metal-semiconductor Schottky diode,” J. Electrochem. Society, vol. 154, pp. J357-J361, 2007. 126A. Salomonsson, M. Eriksson, and H. Dannetun, “Hydrogen interaction with platinum and palladium metal-insulator-semiconductor devices,” J. Appl. Phys., vol. 98, Art. No. 014505, 2005. 127H. M. Dannetun, D. Söderberg, I. Lundström, and L. G. Petersson, “The H2-O2 reaction on palladium studied over a large pressure range: independence of the microscopic sticking coefficients on surface condition,” Surf. Sci., vol. 152, pp. 559-568, 1985. 128D. Dwivedi, R. Dwivedi, and S. K. Srivastava, “Sensing properties of palladium-gate MOS (Pd-MOS) hydrogen sensor-based on plasmagrown silicon dioxide,” Sens. Actuators B, vol. 71, pp. 161-168, 2000. 129M. Eriksson and L. G. Ekedahl, “The influence of CO on the response of hydrogen sensitive Pd-MOS devices,” Sens. Actuators B, vol. 42, pp. 217-223, 1997. 130Y. I Chou, C. M. Chen, W. C. Liu, and H. I. Chen, “A new Pd-InP Schottky hydrogen sensor fabricated by electrophoretic deposition with Pd nanoparticles,” IEEE Electron Device Lett., vol. 26, pp. 62-65, 2005. 131C. K. Kim, J. H. Lee, S. M. Choi, I. H. Noh, H. R. Kim, N. I. Cho, C. Hong, and G. E. Jang, “Pd- and Pt-SiC Schottky diodes for detection of H2 and CH4 at high temperature,” Sens. Actuators B, vol. 77, pp. 455-462, 2001. 132H. T. Wang, T. J. Anderson, F. Ren, C. Z. Li, Z. N. Low, J. Lin, B. P. Gila, S. J. Pearton, A. Osinsky, and A. Dabiran, “Robust detection of hydrogen using differential AlGaN/GaN high electron mobility transistor sensing diodes,” Appl. Phys. Lett., vol. 89, Art. No. 242111, 2006. 133R. R. Rye and A. J. Ricco, “Ultrahigh vacuum studies of Pd metal/insulator/ semiconductor diode H2 sensors,” J. Appl. Phys., vol. 62, pp. 1084-1092, 1987. 134J. Fogelberg, M. Eriksson, H. Dannetun, and L. G. Petersson, “Kinetic modeling of hydrogen adsorption/absorption in thin films on hydrogen-sensitive field-effect devices: Observation of large hydrogen-induced dipoles at the Pd-SiO2 interface,” J. Appl. Phys., vol. 78, pp. 988-996, 1995. 135S. W. Tan, W. T. Chen, M. Y. Chu, and W. S. Lour, “Sub-0.5-μm gate doped-channel FETs with HEMT-like channel using thermally re-flowed photo-resist and spin-on-glass,” Semicond. Sci. & Technol., vol. 19, pp. 167-171, 2004. 136Y. J. Li, W. C. Hsu, and S. Y. Wang, “Temperature-dependent characteristics of Al0.2Ga0.8As/In0.22Ga0.78As pseudomorphic DH-MODFET with GaAs/AlGaAs superlattice buffer layer,” J. Vac. Sci. Technol. B, vol. 21, pp. 760-762, 2003. 137D. R. Greenberg, J. A. D.Alamo, J. P. Harbison, and L. T. Florez, “A pseudomorphic AlGaAs/n+-InGaAs metal-insulator-doped channel FET for broad-band, large-signal applications,” IEEE Electron Devices Lett., vol. 12, pp. 436-438, 1991. 138Y. Y. Tsai, K. W. Lin, H. I. Chen, C. T. Lu, H. M. Chuang, C. Y. Chen, C. C. Cheng, and W. C. Liu, “Investigation of hydrogen-sensing properties of Pd/AlGaAs-based Schottky diodes,” IEEE Trans. Electron Devices, vol. 50, pp. 2532-2539, 2003. 139K. W. Lin, H. I. Chen, C. T. Lu, Y. Y. Tsai, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A hydrogen sensing Pd/InGaP metal-semiconductor (MS) Schottky diode hydrogen sensor,” Semicond. Sci. Technol., vol. 18, pp. 615-619, 2003. 140H .I. Chen, Y. I Chou, and C. K. Hsiung, “Comprehensive study of adsorption kinetics for hydrogen sensing with an electroless-plated Pd-InP Schottky diode,” Sens. Actuators B, vol. 92, pp. 6-16, 2003. 141J. W. Medlin, A. E. Lutz, R. Bastasz, and A. H. McDaniel, “The response of palladium metal-insulator-semiconductor devices to hydrogen-oxygen mixtures: comparisons between kinetic models and experiment,” Sens. Actuators B, vol. 96, pp. 290-297, 2003. 142B. D. Kay, C. H. F. Peden, and D. W. Goodman, “Kinetics of hydrogen absorption by Pd (110),” Phys. Rev. B, vol. 34, pp. 817-822, 1986. 143R. C. Hughes, W. K. Schubert, T. E. Zipperian, J. L. Rodriguez, and T. A. Plut, “Thin-film palladium and silver alloys and layers for metal-insulator-semiconductor sensors,” J. Appl. Phys., vol. 62, pp. 1074-1083, 1987. 144R. Mostefaoui, J. Chevallier, A. Jalil, J. C. Pesant, C. W. Tu, and R. F. Kopf, “Shallow donors and D-X centers neutralization by atomic hydrogen in GaAlAs doped with silicon,” J. Appl. Phys., vol. 59, pp. 2821-2827, 1986. 145J. Schalwig, G. Müller, U. Karrer, M. Eickhoff, O. Ambacher, M. Stutzmann, L. Görgens, and G. Dollinger, “Hydrogen response mechanism of Pt-GaN Schottky diodes,” Appl. Phys. Lett., vol. 80, pp. 1222-1224, 2002. 146A. Jalil, J. Chevallier, R. Azoulay and A. Mircea, “Electron mobility studies of the donor neutralization by atomic hydrogen in GaAs doped with silicon,” J. Appl. Phys., vol. 59, pp. 3774-3777, 1986. 147S. J. Pearton, W. C. Dautremont-Smith, J. Chevallier, C. W. Tu, and K. D. Cummings, “Hydrogenation of shallow-donor levels in GaAs,” J. Appl. Phys., vol. 59, pp. 2821-2827, 1986. 148J. Liu, C. Ortiz, Y. Zhang, H. Bakhru, and J. Corbett, “Effects of hydrogen on the barrier height of a titanium Schottky diode on p-type silicon,” Phys. Rev. B, vol. 44, pp. 8918-8924, 1991. 149J. Chevallier, W. C. Dautremont-Smith, C. W. Tu, and S. J. Pearton, “Donor neutralization in GaAs(Si) by atomic hydrogen,” Appl. Phys. Lett., vol. 47, pp. 108-110, 1985. 150A. L. Spetz, D. Scheiβer, A. Baranazahi, B. Wälivaara, W. Göpel, and I. Lundström, “X-ray photoemission and Auger electron spectroscopy analysis of fast responding activated metal oxide silicon carbide gas sensors,” Thin Solid Films, vol. 299, pp. 183-189, 1997. 151L. G. Petersson, H. M. Dannetun, and I. Lundström, “The Water-Forming Reaction on Palladium,” Surf. Sci., vol. 161, pp. 77-100, 1985. 152D. Fillippini and I. Lundström, “Hydrogen detection on bare SiO2 between metal gates,” J. Appl. Phys., vol. 91, pp. 3896-3903, 2002. 153Y. Y. Tsai, K. W. Lin, H. I. Chen, C. T. Lu, H. M. Chuang, C. Y. Chen, and W. C. Liu, “Comparative hydrogen sensing performances of Pd- and Pt-InGaP metal-oxide-semiconductor Schottky diodes,” J. Vac. Sci. Technol. B, vol. 21, pp. 2471-2477, 2003. 154M. Johansson, I. Lundström, and L. G. Ekedahl, “Bridging the pressure gas for palladium metal-insultor-semiconductor hydrogen sensors in oxygen containing environments,” J. Appl. Phys., vol. 84, pp. 44-51, 1998. 155W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, S. Y. Cheng, and K. H. Yu, “Hydrogen-sensing characteristics of a novel Pd/InP MOS Schottky diode hydrogen sensor,” IEEE Trans. Electron Devices, vol. 48, pp. 1938-1944, 2001. 156L. G. Ekedahl, M. Eriksson, and I. Lundström, “Hydrogen sensing mechanisms of metal-insulator interfaces,” Acc. Chem. Res., vol. 31, pp. 249-256, 1998. 157R. C. Hughes, P. A. Taylor, A. J. Ricco, and R. R. Rye, “Kinetics of hydrogen adsorption and absorption: catalytic gate MIS gas sensors on silicon,” J. Electrochem. Soc., vol. 136, pp. 2653-2661, 1989. 158C. Nylander, M. Armgarth, and C. Svensson, “Hydrogen induced drift in palladium gate metal-oxide-semiconductor structures,” J. Appl. Phys., vol. 56, pp. 1177-1188, 1984. 159L. G. Petersson, H. M. Dannetun, J. Fogelberg, and I. Lundström, “Hydrogen adsorption states at the external and internal palladium surfaces of a palladium-silicon dioxide-silicon structure,” J. Appl. Phys., vol. 58, pp. 404-413, 1985. 160W. C. Liu, K. H. Yu, R. C. Liu, K. W. Lin, K. P. Lin, C. H. Yen, C. C. Cheng, and K. B. Thei, “Investigation of temperature-dependent characteristics of an n+-InGaAs/n-GaAs composite doped channel (CDC) heterostructure field-effect transistor,” IEEE Trans. Electron Devices, vol. 48, pp. 2677-2683, 2001. 161C. Z. Wu, L. W. Laih, and W. C. Liu, “Study of InGaAs/GaAs metal-insulator-semiconductor-like heterostructure field-effect transistor,” Solid-State Electron., vol. 39, pp. 791-795, 1996. 162W. S. Lour, W. L. Chang, W. C. Liu, Y. H. Shie, H. J. Pan, J. Y. Chen, and W. C. Wang, “Application of selective removal of mesa sidewalls for high-breakdown and high-linearity Ga0.51In0.49P/In0.15Ga0.85As pseudomorphic transistors,” Appl. Phys. Lett., vol. 74, pp. 2155-2157, 1999. 163W. C. Hsu, H. M. Shieh, C. L. Wu, and T. S. Wu, “A high performance symmetric double δ–doped GaAs/InGaAs/GaAs pseudomorphic HFET’s grown by MOCVD,” IEEE Trans. Electron Devices, vol. 41, pp. 456-457, 1994. 164I. Lundström, S. Shivaraman, C. Svensson, and L. Lundkvist, “A hydrogen-sensitive MOS field effect transistor,” Appl. Phys. Lett., vol. 26, pp. 55-57, 1975. 165M. Peschke, H. Lorenz, H. Riess, and I. Eisele, “Recognition of hydrogen and ammonia by modified gate metallization of the Suspended-gate FET,” Sens. Actuators B, vol. 1, pp. 21-24, 1990. 166P. Bergveld, J. Henddrikse, and W. Olthuis, “Theory and application of the material work function for chemical sensors based on the field effect principle,” Meas. Sci. Technol., vol. 9, pp. 1801-1808, 1998. 167K. Scharnagl, M. Bögner, A. Fuchs, R. Winter, T. Doll, and I. Eisele, “Enhanced roon temperature gas sensing with metal oxides by means of the electroadsorptive effect in hybrid suspended gate FET,” Sens. Actuators B, vol. 57, pp. 35-38, 1999. 168K. Scharnagl, M. Eriksson, A. Karthigeyan, M. Burgmair, M. Zimmer, and I. Eisele, “Hydrogen detection at high concentration with stabilized palladium,” Sens. Actuators B, vol. 78, pp. 138-143, 2001. 169Z. Gergintschew, P. Kornetzky, and D. Schipanski, “The capacitively controlled field effect transistor (CCFET) as a new low power gas sensor,” Sens. Actuators B, vol. 36, pp. 285-289, 1996. 170R. P. Gupta, Z. Gergintschew, D. Schipanski, and P. D. Vyas, “YBCO-FET room temperature ammonia sensor,” Sens. Actuators B, vol. 63, pp. 35-41, 2000. 171Y. Y. Tsai, C. W. Hung, K. W. Lin, P. H. Lai, S. I Fu, H. M. Chuang, H. I. Chen, and W. C. Liu, “On a GaAs-based transistor-type hydrogen sensing detector with a Pd/Al0.24Ga0.76As metal-semiconductor Schottky gate,” Semicond. Sci. Technol., vol. 21, pp. 221-227, 2006. 172Y. R. Yuan, K. Mohammed, M. A. A. Pudensi, and James L. Merz, “Effects of carrier confinement in graded AlGaAs/GaAs heterojunctions,” Appl. Phys. Lett., vol. 45, pp. 739-741, 1984. 173S. W. Tan, H. R. Chen, A. H. Lin, W. T. Chen, and W. S. Lour, “Experiments and modelling of double-emitter HPTs with different emitter-area ratios for functional applications,” Semicond. Sci. Technol., vol. 19, pp. 1213-1219, 2004. 174D. F. Guo, J. Y. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “Characteristics of a new BBOS with an AlGaAs-δ(n+)-GaAs-InAlGaP collector structure,” IEEE Trans. Electron Devices, vol. 51, pp. 542-547, 2004. 175T. Egawa, Y. Murata, T. Jimbo, and M. Umeno, “Characterization of AlGaAs/GaAs vertical-cavity surface-emitting laser diode grown on Si substrate by MOCVD,” Appl. Surf. Sci., vol. 117, pp. 771-775, 1997. 176W. Liu, “Failure mechanisms in AlGaAs/GaAs power heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 43, pp. 220-227, 1996. 177W. C. Liu, W. L. Chang, W. S. Lour, H. J. Pan, W. C. Wang, J. Y. Chen, K. H. Yu, and S. C. Feng, “High-performance InGaP/InxGa1-xAs HEMT with an inverted delta-doped V-shaped channel structure,” IEEE Electron Devices Lett., vol. 20, pp. 548-550, 1999. 178Y. Fu, T. H. Wang, and M. Willander, “Designing two-dimensional electron gases in GaAs/InGaAs/AlGaAs, delta-doped AlGaAs/GaAs, and AlGaAs/InGaAs/GaAs heterostructures for single electron transistor application,” J. Appl. Phys., vol. 89, pp. 1759-1763, 2001. 179C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, H. M. Chuang, C. Y. Chen, and W. C. Liu, “Hydrogen sensing characteristics of Pd- and Pt-Al0.3Ga0.7As metal-semiconductor (MS) Schottky diodes,” Semicond. Sci. Technol., vol. 19, pp. 778-782, 2004. 180C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, C. W. Hong, and W. C. Liu, “Temperature-dependent hydrogen sensing characteristics of a Pd/oxide/Al0.24Ga0.76As high electron mobility transistor (HEMT),” Electron. Lett., vol. 40, pp. 1608-1609, 2004. 181Y. Y. Tsai, C. C. Cheng, P. H. Lai, S. I Fu, C. W. Hung, H. I. Chen, and W. C. Liu, “Comprehensive study of hydrogen sensing characteristics of Pd metal-oxide-semiconductor (MOS) transistors with Al0.24Ga0.76As and In0.49Ga0.51P Schottky contact layers,” Sens. Actuators B, vol. 120, pp. 687-693, 2007. 182A. Baranzahi, A. L. Spetz, and I. Lundström, “Reversible hydrogen annealing of metal-oxide-silicon carbide devices at high temperatures,” Appl. Phys. Lett., vol. 67, pp. 3203-3205, 1995. 183C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, C. H. Hong, and W. C. Liu, “Characteristics of a Pd–oxide–In0.49Ga0.51P high electron mobility transistor (HEMT)-based hydrogen sensor,” Sens. Actuators B, vol. 113, pp. 29-35, 2006. 184O. Brand, “Microsensor integration into systems-on-chip,” Proc. IEEE, vol. 94, pp. 1160-1176, 2006. 185C. Hagleitner, A. Hierlemann, D. Lange, A. Kummer, N. Kerness, O. Brand, and H. Baltes, “Smart single-chip gas sensor microsystem,” Nature, vol. 414, pp. 293-296, 2001. 186A. Baschirotto, S. Capone, A. D’ Amico, C. Di Natale, V. Ferragina, G. Ferri, L. Francioso, M. Grassi, N. Guerrini, P. Malcovati, E. Martinelli, and P. Siciliano, “A portable integrated wide-range gas sensing system with smart A/D front-end,” Sens. Actuators B, vol. 130, pp. 164-174, 2008. 187G. Ferri, V. Stornelli, A. D. Marcellis, A. Flammini, and A. Depari, “Novel CMOS fully integrable interface for wide-range resistive sensor arrays with parasitic capacitance estimation,” Sens. Actuators B, vol. 130, pp. 207-215, 2008. 188G. Barillaro, P. Bruschi, F. Pieri, and L. M. Strambini, “CMOS-compatible fabrication of porous silicon gas sensors and their readout electronics on the same chip,” Phys. Stat. Sol., vol. 204, pp. 1423-1428, 2007. 189M. Grassi, P. Malcovati, and A. Baschirotto, “A 160 dB equivalent dynamic range auto-scaling interface for resistive gas sensors arrays,” IEEE J. Solid-State Circuits, vol. 42, pp. 518-528, 2007. 190C. H. Mastrangelo and R. S. Muller, “Microfabricated thermal absolute-pressure sensor with on-chip digital front-end processor,” IEEE J. Solid-State Circuits, vol. 26, pp. 1998-2007, 1991. 191S. A. Bota, A. Dieguez, J. L. Merino, R. Casanova, J. Samitier and C. Cane, “A monolithic interface circuit for gas sensor arrays: control and measurement,” Analog Integr. Circ. Sig. Process., vol. 40, pp. 175-184, 2004. 192P. Robogiannakis, S. Chatzandroulis, and C. Tsamis, “Integrated circuit interface for metal oxide chemical sensor arrays,” Sens. Actuators A, vol. 132, pp. 252-257, 2006. 193P. Bruschi, D. Navarrini, and M. Piotto, “A closed-loop mass flow controller based on static solid-state devices,” J. Microelectromech. Syst., vol. 15, pp. 652-658, 2006. 194C. Vančura, M. Rüegg, Y. Li, C. Hagleitner, and A. Hierlemann, “Magnetically actuated complementary metal oxide semiconductor resonant cantilever gas sensor systems,” Anal. Chem., vol. 77, pp. 2690-2699, 2005. 195J. L. Merino, S. A. Bota, R. Casanova, A. Dieguez, C. Cane, and J. Samitier, “A reusable smart interface for gas sensor resistance measurement,” IEEE Trans. Instrum. Meas., vol. 53, pp. 1173-1178, 2004. 196C. Zhang, A. Srivastava, and P. K. Ajmera, “A 0.8 V CMOS amplifier design,” Analog Integr. Circ. Sig. Process., vol. 47, pp. 315-321, 2004. 197T. Lehmann and M. Cassia, “1-V power supply CMOS cascode amplifier,” IEEE J. Solid-State Circuits, vol. 36, pp. 1082-1086, 2001. 198R. K. Sharma, P. C.H. Chan, Z. Tang, G. Yan, I. M. Hsing, J. K.O. Sin, “Investigation of stability and reliability of tin oxide thin-film for integrated micro-machined gas sensor devices,” Sens. Actuators B, vol. 81, pp. 9-16, 2001.
|