跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/03 02:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳志忠
研究生(外文):CHEN CHIHCHUNG
論文名稱:主動式車輛懸吊系統於四分之一車與二分之一車之控制出力設計
論文名稱(外文):Force Control Scheme of Active Suspension System with a Quarter Car and a Half Car Models
指導教授:陳榮順陳榮順引用關係
指導教授(外文):CHEN RONGSHUNG
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:139
中文關鍵詞:主動式懸吊系統四分之一車模型二分之一車模型二次型最佳控制頻域控制設計
外文關鍵詞:Active Suspension SystemQuarter Car ModelHalf Car ModelLinear Quadratic ControlFrequemcy Domain Design
相關次數:
  • 被引用被引用:0
  • 點閱點閱:466
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文藉由修正Linear Quadratic Regulator (LQR)設計方法,提出應用於四分之一車與二分之一車主動式懸吊系統之控制設計。文中仍利用LQR理論設計車身及輪胎的穩態響應;但由於LQR 理論無法直接針對系統暫態響應規格設計,本文將直接針對系統轉移函式的共振頻率附近調變設計暫態響應規格,以滿足乘坐舒適度、懸吊行程空間限制、及操控性能等設計需求。此外,本文亦提出一切換模式(switching control mode)控制器,使有限懸吊行程空間被充分利用,以期在各種不同的路面情況下皆能達到理想的乘坐舒適性。電腦模擬結果證明本文所提出之設計方法確實可針對系統暫態響應規格進行設計調變,而且主動式懸吊系統性能在與被動式懸吊系統性能比較之下亦獲得明顯的改善。

With a quarter car model and a half car model, a novel control schemes is proposed for force control in active suspension design by modifying Linear Quadratic Regulator (LQR) theory on frequency domain. The conventional LQR theory is applied to design the body and the tire position tracking ability with respect to road surface. For the LQR theory not capable of directly designing the controllers for the system transient response, the proposed controllers are sequentially modified around the resonant frequency of system transfer function to satisfy the ride comfort quality, suspension travel, and maneuver. Moreover, the switching control scheme is developed to self-adjust the linear control modes of this work for the flexible utilization of rattle space under various circumstances. Computer simulations are performed to verify the proposed control schemes.

ABSTRACT
CONTENTS
CHAPTER 1 INTRODUCTIONS
1.1 Background and Motivation
1.2 Literature Reviews
1.3 Organization of Thesis
CHAPTER 2 SYSTEM DESCRIPSION
2.1-1 Quarter Car Model
2.1-2 Half Car Model
2.2 The Road Profile
2.3 Definition of Performance Index
2.4 System Constraints
CHAPTER 3 QUARTER CAR MODEL CONTROL SCHEME
3.1 Enhancement Criteria of System Outputs
3.2 LQR Method Design
3.3 Transient Response Design on Frequency Domain
3.4 Switching Control Scheme
CHAPTER 4 SIMULATIN RESULTS OF QUARTER CAR MODEL
4.1 Linear Controller Design Process
4.2 Simulation Results of Switch Control Scheme
CHAPTER 5 HALF CAR MODEL CONTROL SCHEME
5.1 Enhancement Criteria of System Outputs
5.2 LQR Method Design
5.3 Transient Response Design on Frequency Domain
5.4 Switching Control Scheme
CHAPTER 6 SIMULATIN RESULTS OF HALF CAR MODEL
6.1 Linear Controller Design Process
6.2 Linear Control Simulation Results
6.3 Switching Control Scheme Simulation Results
CHAPTER 7 CONCLUSION
REFERENCES
APPENDIX A

[1] M. G. Pollard and N. J. A. Simons, "Passenger Comfort-the Role of Active Suspension," IMechE, vol. 198D, pp. 161-175, 1984.
[2] A. G. Thompson, "An Active Suspension with Optimal Linear State Feedback," Vehicle System Dynamics, vol. 5, pp. 187-203, 1976.
[3] A. G. Thompson and C. E. M. Pearce, "Physically Realizable Feedback Control for a Fully Active Preview Suspension Applied to a Half-Car Model," Vehicle System Dynamics, vol. 30, pp. 17-35, 1998.
[4] B. R. Davis and A. G. Thompson, "Optimal Linear Active Suspensions with Integral Constraint," Vehicle System Dynamics, vol. 17, pp. 357-366, 1988.
[5] A. G. Thompson, B. R. Davis and C. E. M. Pearce, "An Optimal Linear Active Suspension with Finite Road Preview," Society of Automotive Engineers, 800520, pp. 2009-2020, 1981.
[6] A. G. Thompson and B. R. Davis, "Optimal Linear Active Suspension with Derivative Constraints and Output Feedback Control," Vehicle System Dynamics, vol. 17, pp. 179-192, 1988.
[7] Y. J. Tsao and R. Chen, "Force Control of Active Suspension Design with a Half Car Model by Using Genetic Algorithms," 4th International Symposium on Advanced Vehicle Control, Nagoya, Japan, 1998, pp. 14-18.
[8] S. R. Chen and R. Chen, "Fuzzy Self-Gain Tuning Controller for Active Suspension System," 5th World Congress on Intelligent Transport Systems, Korea, 1998, pp. 12-16.
[9] J. K. Hedrick and T. Butsuen, "Invariant Properties of Automotive Suspensions," IMechE, vol. 204, 21-27, 1990.
[10] H. Y. Lee and J. K. Hedrick, "Dynamic Constraint Equations And Their Impact on Active Suspension Performance," Proc. 11th IAVSD Symposium on the Dynamics of Vehicles, Canada, Kingston, 1989, pp. 357-377.
[11] J. S. Lin and I. Kanellakopoulos, "Non-linear Design of Active Suspensions," IEEE Control Systems, June, pp. 45-59, 1997.
[12] R. Rajamani and J. K. Hedrick, "Performance of Active Automotive Suspensions with Hydraulic Actuators: Theory and Experiment," Proceedings of the American Control Conference, 1994, pp. 1214-1218.
[13] A. G. Thompson and P. M. Chaplin, "Force Control in Electrohydraulic Active Suspensions," Vehicle System Dynamics, vol. 25, pp. 185-202, 1996.
[14] S. T. Han and T. Bradshaw, "Validation of the Harshness Problem of Automotive Active Suspensions," Vehicle System Dynamics, vol. 30, pp. 89-115, 1998.
[15] M. H. Perng, "Nearly Decoupled Multivariable Control Systems Design Part 2. Multi-loop Control System Design," INT. J. Control, vol. 50(4), pp. 357-377, 1989.
[16] J. M. Macciejowski, Multivariable Feedback Design (England: Addison-Wesley Publishing Company, 1989).
[17] C. Chen and R. Chen, "Force Control Scheme of Active Suspension with a Quarter Car Model by Modifying LQR Theory," Control and Application, Banff, Canada, 1999.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top