|
[1] A. Manz, N. Graber, and H. M. Widmer, "Miniaturized Total Chemical-Analysis Systems - a Novel Concept for Chemical Sensing," Sensors and Actuators B-Chemical, vol. 1, pp. 244-248, 1990. [2] T. Vilkner, D. Janasek, and A. Manz, "Micro total analysis systems. Recent developments," Analytical Chemistry, vol. 76, pp. 3373-3385, 2004. [3] D. R. Reyes, D. Iossifidis, P. A. Auroux, and A. Manz, "Micro total analysis systems. 1. Introduction, theory, and technology," Analytical Chemistry, vol. 74, pp. 2623-2636, 2002. [4] P. A. Auroux, D. Iossifidis, D. R. Reyes, and A. Manz, "Micro total analysis systems. 2. Analytical standard operations and applications," Analytical Chemistry, vol. 74, pp. 2637-2652, 2002. [5] D. J. Harrison, K. Fluri, K. Seiler, Z. H. Fan, C. S. Effenhauser, and A. Manz, "Micromachining a Miniaturized Capillary Electrophoresis-Based Chemical-Analysis System on a Chip," Science, vol. 261, pp. 895-897, 1993. [6] J. Rossier, F. Reymond, and P. E. Michel, "Polymer microfluidic chips for electrochemical and biochemical analyses," Electrophoresis, vol. 23, pp. 858-867, 2002. [7] S. Y. Lai, X. Cao, and L. J. Lee, "A packaging technique for polymer microfluidic platforms," Analytical Chemistry, vol. 76, pp. 1175-1183, 2004. [8] P. Abgrall and A. M. Gue, "Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem - a review," Journal of Micromechanics and Microengineering, vol. 17, pp. R15-R49, 2007. [9] K. N. Ren, W. Dai, J. H. Zhou, J. Su, and H. K. Wu, "Whole-Teflon microfluidic chips," Proceedings of the National Academy of Sciences of the United States of America, vol. 108, pp. 8162-8166, 2011. [10] J. Haneveld, H. Jansen, E. Berenschot, N. Tas, and M. Elwenspoek, "Wet anisotropic etching for fluidic 1D nanochannels," Journal of Micromechanics and Microengineering, vol. 13, pp. S62-S66, 2003. [11] Z. H. Fan and D. J. Harrison, "Micromachining of Capillary Electrophoresis Injectors and Separators on Glass Chips and Evaluation of Flow at Capillary Intersections," Analytical Chemistry, vol. 66, pp. 177-184, 1994. [12] C. S. Effenhauser, G. J. M. Bruin, A. Paulus, and M. Ehrat, "Integrated capillary electrophoresis on flexible silicone microdevices: Analysis of DNA restriction fragments and detection of single DNA molecules on microchips," Analytical Chemistry, vol. 69, pp. 3451-3457, 1997. [13] G. B. Lee, S. H. Chen, G. R. Huang, W. C. Sung, and Y. H. Lin, 67 "Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection," Sensors and Actuators B-Chemical, vol. 75, pp. 142-148, 2001. [14] C. H. Ahn, J. W. Choi, G. Beaucage, J. H. Nevin, J. B. Lee, A. Puntambekar, and J. Y. Lee, "Disposable Smart lab on a chip for point-of-care clinical diagnostics," Proceedings of the Ieee, vol. 92, pp. 154-173, 2004. [15] M. Stjernstrom and J. Roeraade, "Method for fabrication of microfluidic systems in glass," Journal of Micromechanics and Microengineering, vol. 8, pp. 33-38, 1998. [16] A. Han, K. W. Oh, S. Bhansali, H. Thurman Henderson, and C. H. Ahn, "A low temperature biochemically compatible bonding technique using fluoropolymers for biochemical microfluidic systems," pp. 414-418, 2000. [17] R. T. Kelly and A. T. Woolley, "Thermal bonding of polymeric capillary electrophoresis microdevices in water," Analytical Chemistry, vol. 75, pp. 1941-1945, 2003. [18] Z. Chen, Y. Gao, J. Lin, R. Su, and Y. Xie, "Vacuum-assisted thermal bonding of plastic capillary electrophoresis microchip imprinted with stainless steel template," Journal of Chromatography A, vol. 1038, pp. 239-245, 2004. [19] Y. C. Su and L. Lin, "Localized plastic bonding for micro assembly, packaging and liquid encapsulation," pp. 50-53, 2001. [20] J. Voldman, M. L. Gray, and M. A. Schmidt, "An integrated liquid mixer/valve," Microelectromechanical Systems, Journal of, vol. 9, pp. 295-302, 2000. [21] A. Berthold, L. Nicola, P. Sarro, and M. Vellekoop, "Glass-to-glass anodic bonding with standard IC technology thin films as intermediate layers," Sensors and Actuators A: Physical, vol. 82, pp. 224-228, 2000. [22] F. Niklaus, P. Enoksson, P. Griss, E. Kalvesten, and G. Stemme, "Low-temperature wafer-level transfer bonding," Microelectromechanical Systems, Journal of, vol. 10, pp. 525-531, 2001. [23] T. Ito, K. Sobue, and S. Ohya, "Water glass bonding for micro-total analysis system," Sensors and Actuators B: Chemical, vol. 81, pp. 187-195, 2002. [24] B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, "Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer," Microelectromechanical Systems, Journal of, vol. 9, pp. 76-81, 2000. [25] S. Li and S. Chen, "Polydimethylsioxane fluidic interconnects for microfluidic systems," Advanced Packaging, IEEE Transactions on, vol. 26, pp. 242-247, 2003. 68 [26] R. Konrad, A. Griebel, W. Dorner, and H. Lowe, "Towards disposable lab-on-a-chip: Poly (methylmethacrylate) microchip electrophoresis device with electrochemical detection," Electrophoresis, vol. 23, pp. 596-601, 2002. [27] H. Nakanishi, T. Nishimoto, R. Nakamura, A. Yotsumoto, T. Yoshida, and S. Shoji, "Studies on SiO-SiO bonding with hydrofluoric acid. Room temperature and low stress bonding technique for MEMS," Sensors and Actuators A: Physical, vol. 79, pp. 237-244, 2000. [28] H. Becker and C. Gartner, "Polymer microfabrication methods for microfluidic analytical applications," Electrophoresis, vol. 21, pp. 12-26, 2000. [29] M. Iwaki, "Ion surface treatments on organic materials," Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, vol. 175, pp. 368-374, 2001. [30] Y. Zhang, A. C. H. Huan, K. L. Tan, and E. T. Kang, "Surface modification of poly(tetrafluoroethylene) films by low energy Ar+ ion-beam activation and UV-induced graft copolymerization," Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, vol. 168, pp. 29-39, 2000. [31] V. Svorcik, I. Micek, V. Rybka, L. Palmetshofer, and V. Hnatowicz, "Ion beam ablation of polytetrafluoroethylene," Journal of Applied Polymer Science, vol. 69, pp. 1257-1261, 1998. [32] J. C. Caro, U. Lappan, and K. Lunkwitz, "Sulfonation of fluoropolymers induced by electron beam irradiation," Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, vol. 151, pp. 181-185, 1999. [33] T. Seguchi, "New trend of radiation application to polymer modification - irradiation in oxygen free atmosphere and at elevated temperature," Radiation Physics and Chemistry, vol. 57, pp. 367-371, 2000. [34] A. Oshima, S. Ikeda, E. Katoh, and Y. Tabata, "Chemical structure and physical properties of radiation-induced crosslinking of polytetrafluoroethylene," Radiation Physics and Chemistry, vol. 62, pp. 39-45, 2001. [35] K. Sato, S. Ikeda, M. Iida, A. Oshima, Y. Tabata, and M. Washio, "Study on poly-electrolyte membrane of crosslinked PTFE by radiation-grafting," Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, vol. 208, pp. 424-428, 2003. [36] A. Oshima, T. Seguchi, and Y. Tabata, "ESR study on free radicals trapped in crosslinked polytetrafluoroethylene (PTFE) - II radical formation and 69 reactivity," Radiation Physics and Chemistry, vol. 55, pp. 61-71, 1999. [37] A. Oshima, S. Ikeda, H. Kudoh, T. Seguchi, and Y. Tabata, "Temperature effects on radiation induced phenomena in polytetrafluoroetylene (PTFE)-change of G-value," Radiation Physics and Chemistry, vol. 50, pp. 611-615, 1997. [38] T. Gumpenberger, J. Heitz, D. Bauerle, and T. C. Rosenmayer, "Modification of expanded polytetrafluoroethylene by UV irradiation in reactive and inert atmosphere," Applied Physics a-Materials Science & Processing, vol. 80, pp. 27-33, 2005. [39] J. Heitz, H. Niino, and A. Yabe, "Chemical surface modification on polytetrafluoroethylene films by vacuum ultraviolet excimer lamp irradiation in ammonia gas atmosphere," Applied Physics Letters, vol. 68, pp. 2648-2650, 1996. [40] C. Girardeaux, Y. Idrissi, J. J. Pireaux, and R. Caudano, "Etching and functionalization of a fluorocarbon polymer by UV laser treatment," Applied Surface Science, vol. 96-8, pp. 586-590, 1996. [41] B. Hopp, Z. Geretovszky, I. Bertoti, and I. W. Boyd, "Comparative tensile strength study of the adhesion improvement of PTFE by UV photon assisted surface processing," Applied Surface Science, vol. 186, pp. 80-84, 2002. [42] P. Chevallier, N. Castonguay, S. Turgeon, N. Dubrulle, D. Mantovani, P. H. McBreen, J. C. Wittmann, and G. Laroche, "Ammonia RF-plasma on PTFE surfaces: Chemical characterization of the species created on the surface by vapor-phase chemical derivatization," Journal of Physical Chemistry B, vol. 105, pp. 12490-12497, 2001. [43] T. G. Vargo, J. A. Gardella, A. E. Meyer, and R. E. Baier, "Hydrogen Liquid Vapor Radio-Frequency Glow-Discharge Plasma Oxidation Hydrolysis of Expanded Poly(Tetrafluoroethylene)(Eptfe) and Poly(Vinylidene Fluoride)(Pvdf) Surfaces," Journal of Polymer Science Part a-Polymer Chemistry, vol. 29, pp. 555-570, 1991. [44] D. J. Wilson, R. L. Williams, and R. C. Pond, "Plasma modification of PTFE surfaces Part I: Surfaces immediately following plasma treatment," Surface and Interface Analysis, vol. 31, pp. 385-396, 2001. [45] S. Ishikawa, K. Yukimura, K. Matsunaga, and T. Maruyama, "The surface modification of poly(tetrafluoroethylene) film using dielectric barrier discharge of intermittent pulse voltage," Surface & Coatings Technology, vol. 130, pp. 52-56, 2000. [46] H. Z. Liu, N. Y. Cui, N. M. D. Brown, and B. J. Meenan, "Effects of DBD plasma operating parameters on the polymer surface modification," Surface & 70 Coatings Technology, vol. 185, pp. 311-320, 2004. [47] D. J. Hook, T. G. Vargo, J. A. Gardella, K. S. Litwiler, and F. V. Bright, "Silanization of Radio-Frequency Glow-Discharge Modified Expanded Poly(Tetrafluoroethylene) Using (Aminopropyl)Triethoxysilane," Langmuir, vol. 7, pp. 142-151, 1991. [48] T. G. Vargo, P. M. Thompson, L. J. Gerenser, R. F. Valentini, P. Aebischer, D. J. Hook, and J. A. Gardella, "Monolayer Chemical Lithography and Characterization of Fluoropolymer Films," Langmuir, vol. 8, pp. 130-134, 1992. [49] D. T. Clark and D. R. Hutton, "Surface Modification by Plasma Techniques .1. The Interactions of a Hydrogen Plasma with Fluoropolymer Surfaces," Journal of Polymer Science Part a-Polymer Chemistry, vol. 25, pp. 2643-2664, 1987. [50] J. R. Chen and T. Wakida, "Studies on the surface free energy and surface structure of PTFE film treated with low temperature plasma," Journal of Applied Polymer Science, vol. 63, pp. 1733-1739, 1997. [51] M. E. Ryan and J. P. S. Badyal, "Surface Texturing of Ptfe Film Using Nonequilibrium Plasmas," Macromolecules, vol. 28, pp. 1377-1382, 1995. [52] U. Lappan, H. M. Buchhammer, and K. Lunkwitz, "Surface modification of poly(tetrafluoroethylene) by plasma pretreatment and adsorption of polyelectrolytes," Polymer, vol. 40, pp. 4087-4091, 1999. [53] J. P. Badey, E. Espuche, D. Sage, B. Chabert, and Y. Jugnet, "A comparative study of the effects of ammonia and hydrogen plasma downstream treatment on the surface modification of polytetrafluoroethylene," Polymer, vol. 37, pp. 1377-1386, 1996. [54] C. W. Lin, W. C. Hsu, and B. J. Hwang, "Investigation of wet chemical-treated poly(tetrafluoroethylene) surface and its metallization with SIMS, XPS and atomic force microscopy," Journal of Adhesion Science and Technology, vol. 14, pp. 1-14, 2000. [55] N. Inagaki, S. Tasaka, K. Narushima, and K. Mochizuki, "Surface modification of tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) by remote hydrogen plasma and surface metallization with electroless plating of copper metal," Macromolecules, vol. 32, pp. 8566-8571, 1999. [56] N. Inagaki, S. Tasaka, and T. Umehara, "Effects of surface modification by remote hydrogen plasma on adhesion in poly(tetrafluoroethylene)/copper composites," Journal of Applied Polymer Science, vol. 71, pp. 2191-2200, 1999. [57] Y. W. Park, S. Tasaka, and N. Inagaki, "Surface modification of 71 tetrafluoroethylene-hexafluoropropylene (FEP) copolymer by remote H-2, N-2, O-2, and Ar plasmas," Journal of Applied Polymer Science, vol. 83, pp. 1258-1267, 2002. [58] S. W. Lee, J. W. Hong, M. Y. Wye, J. H. Kim, H. J. Kang, and Y. S. Lee, "Surface modification and adhesion improvement of PTFE film by ion beam irradiation," Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, vol. 219, pp. 963-967, 2004. [59] C. C. Perry, J. Torres, S. R. Carlo, and D. H. Fairbrothera, "Reactivity of Cu with poly(tetrafluoroethylene) and poly(vinyl chloride): Effect of pre- and post-metallization modification on the metal/polymer interface," Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, vol. 20, pp. 1690-1698, 2002. [60] C. M. Ng, H. P. Oei, S. Y. Wu, M. C. Zhang, E. T. Kang, and K. G. Neoh, "Surface modification of plasma-pretreated high density polyethylene films by graft copolymerization for adhesion improvement with evaporated copper," Polymer Engineering and Science, vol. 40, pp. 1047-1055, 2000. [61] G. H. Yang, E. T. Kang, and K. G. Neoh, "Electroless deposition of copper and nickel on poly(tetrafluoroethylene) films modified by single and double surface graft copolymerization," Applied Surface Science, vol. 178, pp. 165-177, 2001. [62] S. Y. Wu, E. T. Kang, K. G. Neoh, and K. L. Tan, "Surface modification of poly(tetrafluoroethylene) films by double graft copolymerization for adhesion improvement with evaporated copper," Polymer, vol. 40, pp. 6955-6964, 1999. [63] X. P. Zou, E. T. Kang, K. G. Neoh, C. Q. Cui, and T. B. Lim, "Surface modification of poly(tetrafluoroethylene) films by plasma polymerization of glycidyl methacrylate for adhesion enhancement with evaporated copper," Polymer, vol. 42, pp. 6409-6418, 2001. [64] G. H. Yang, E. T. Kang, K. G. Neoh, Y. Zhang, and K. L. Tan, "Surface graft copolymerization of poly(tetrafluoroethylene) films with N-containing vinyl monomers for the electroless plating of copper," Langmuir, vol. 17, pp. 211-218, 2001. [65] Z. H. Ma, H. S. Han, K. L. Tan, E. T. Kang, and K. G. Neoh, "Surface graft copolymerization induced adhesion of polyaniline film to polytetrafluoroethylene film and copper foil.," European Polymer Journal, vol. 35, pp. 1279-1288, 1999. [66] B. P. Dougherty and W. C. Thomas, "Thermophysical Property Measurements Using an Encapsulated Bead Thermistor - Applications to Liquids and Insulation Materials," Journal of Solar Energy Engineering-Transactions of 72 the Asme, vol. 114, pp. 23-31, 1992. [67] P. R. Young and W. S. Slemp, "Space environmental effects on selected long duration exposure facility polymeric materials," Irradiation of Polymeric Materials, vol. 527, pp. 278-304, 1993. [68] I. Langmuir, "The pure electron discharge and its applications in radio telegraphy and telephony," Proceedings of the Ieee, vol. 85, pp. 1496-1508, 1997. [69] G. Y. Jung, T. H. Kim, and H. B. Lim, "Separation of morpholine, N-methylmorpholine and N-methylmorpholine-N-oxide by indirect UV absorption capillary electrophoresis," Analytical Sciences, vol. 12, pp. 367-370, 1996. [70] J. Caslavska, E. Gassmann, and W. Thormann, "Modification of a Tunable Uv-Visible Capillary Electrophoresis Detector for Simultaneous Absorbency and Fluorescence Detection - Profiling of Body-Fluids for Drugs and Endogenous Compounds," Journal of Chromatography A, vol. 709, pp. 147-156, 1995. [71] L. N. Amankwa, M. Albin, and W. G. Kuhr, "Fluorescence Detection in Capillary Electrophoresis," Trac-Trends in Analytical Chemistry, vol. 11, pp. 114-120, 1992. [72] M. C. Roach, P. Gozel, and R. N. Zare, "Determination of Methotrexate and Its Major Metabolite, 7-Hydroxymethotrexate, Using Capillary Zone Electrophoresis and Laser-Induced Fluorescence Detection," Journal of Chromatography-Biomedical Applications, vol. 426, pp. 129-140, 1988. [73] R. D. Smith, H. R. Udseth, J. A. Loo, B. W. Wright, and G. A. Ross, "Sample Introduction and Separation in Capillary Electrophoresis, and Combination with Mass-Spectrometric Detection," Talanta, vol. 36, pp. 161-169, 1989. [74] J. A. Olivares, N. T. Nguyen, C. R. Yonker, and R. D. Smith, "Online Mass-Spectrometric Detection for Capillary Zone Electrophoresis," Analytical Chemistry, vol. 59, pp. 1230-1232, 1987. [75] P. D. Curry, C. E. Engstromsilverman, and A. G. Ewing, "Electrochemical Detection for Capillary Electrophoresis," Electroanalysis, vol. 3, pp. 587-596, 1991. [76] R. A. Wallingford and A. G. Ewing, "Capillary Zone Electrophoresis with Electrochemical Detection in 12.7-Mu-M Diameter Columns," Analytical Chemistry, vol. 60, pp. 1972-1975, 1988. [77] R. A. Wallingford and A. G. Ewing, "Capillary Zone Electrophoresis with Electrochemical Detection," Analytical Chemistry, vol. 59, pp. 1762-1766, 1987. 73 [78] G. J. M. Bruin, "Recent developments in electrokinetically driven analysis on microfabricated devices," Electrophoresis, vol. 21, pp. 3931-3951, 2000. [79] T. Kaneta, S. Tanaka, and H. Yoshida, "Improvement of Resolution in the Capillary Electrophoretic Separation of Catecholamines by Complex-Formation with Boric-Acid and Control of Electroosmosis with a Cationic Surfactant," Journal of Chromatography, vol. 538, pp. 385-391, 1991. [80] C. S. Lee, D. Mcmanigill, C. T. Wu, and B. Patel, "Factors Affecting Direct Control of Electroosmosis Using an External Electric-Field in Capillary Electrophoresis," Analytical Chemistry, vol. 63, pp. 1519-1523, 1991. [81] R. J. Hunter, "The Use of the Zeta-Potential in Characterizing Transport Processes in Colloidal Dispersions," Abstracts of Papers of the American Chemical Society, vol. 184, pp. 41-Coll, 1982. [82] A. Sze, D. Erickson, L. Q. Ren, and D. Q. Li, "Zeta-potential measurement using the Smoluchowski equation and the slope of the current-time relationship in electroosmotic flow," Journal of Colloid and Interface Science, vol. 261, pp. 402-410, 2003. [83] W. T. Mason, Fluorescent and luminescent probes for biological activity: a practical guide to technology for quantitative real-time analysis: Academic Pr, 1999. [84] P. Gozel, E. Gassmann, H. Michelsen, and R. N. Zare, "Electrokinetic Resolution of Amino-Acid Enantiomers with Copper(Ii) Aspartame Support Electrolyte," Analytical Chemistry, vol. 59, pp. 44-49, 1987. [85] R. Holm and S. Storp, "Surface and interface analysis in polymer technology: A review," Surface and Interface Analysis, vol. 2, pp. 96-106, 1980.
|