跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/06 09:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃秋萍
研究生(外文):Chiew-Peng Ng
論文名稱:液蛋白及繫帶內生物活性物質之研究
論文名稱(外文):Study on Bioactive Compounds in Liquid Egg White and Chalazae
指導教授:賴喜美賴喜美引用關係
指導教授(外文):Hsi-Mei Lai
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:微生物與生化學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:102
中文關鍵詞:液蛋白繫帶唾液酸活性胜肽
外文關鍵詞:liquid egg whitechalazaesialic acidbioactive peptide
相關次數:
  • 被引用被引用:5
  • 點閱點閱:392
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文是以國內液蛋工廠生產之液蛋白為原料,以田口氏試驗設計法(L9),探討不同液蛋白固形物含量(3、4及5%)、液蛋白水解酵素反應溫度(45、50及55℃)、反應液之pH值(pH 5、7及9)及Flavourzyme 1000L蛋白質水解酵素劑量(4000、5000及6000 unit/g liquid egg white solid)對液蛋白之蛋白質水解度、水解液色澤及其加熱殺菌(75℃,30 min)後之性狀的影響。試驗結果顯示,當液蛋白水解時間為1小時之水解度範圍為9.21-18.68%,而水解時間增加至8 小時時,水解度則提高至12.27-32.29%,此表示水解度隨著反應時間的增加而提高,其中最高液蛋白水解度之反應條件為:液蛋白固形物含量為5%、反應溫度為55℃、反應液pH值為5及Flavourzyme劑量為6000 unit /g liquid egg white solid。液蛋白水解液經加熱殺菌後,依液蛋白水解度之高低與反應時作用之pH值,分別可得具流動性之澄清水解液、半流動性之軟膠體或不流動之膠體。以獲得最高液蛋白水解度為水解條件之繫帶水解液之水解度亦隨著反應時間的增加而提高。
利用HPAEC-PAD (High Performance Anion Exchange Chromatography -Pulsed Amperometric Detection) 測定經酵素水解且管柱分離純化之液蛋白與繫帶樣品的唾液酸含量分別為0.031% (db) 及0.27% (db)。在血管收縮素轉換酶(angiotensin converting enzyme, ACE)抑制能力測定結果得知,欲得抑制ACE能力較佳的活性胜肽,其水解條件為:液蛋白固形物含量為4(水解1 hr)或5%(水解2 hr)、反應溫度為50℃、反應液pH值為5及Flavourzyme 1000L酵素劑量為4000 unit /g liquid egg white solid。此結果顯示,較高水解度的水解液未必具有較強之ACE抑制能力。在固定的水解條件(繫帶固形物含量:2.6%、反應溫度:55℃、反應液pH值:5、添加蛋白質水解酵素量:6000 unit /g chalazae solid)下,繫帶水解1、2、4和8小時得到的活性胜肽其ACE抑制能力則隨水解時間延長而有所提高。此外,以獲得最高ACEI%活性的水解條件之酵素水解過程並不會影響繫帶中唾液酸的含量。
進一步以獲得最高ACEI%活性胜肽的水解條件進行液蛋白水解,殺菌前的液蛋白水解液之IC50值為0.40 mg/mL,殺菌後液蛋白水解液的IC50值則為0.37mg/mL。若與其他不同來源及酵素水解方法之蛋白質水解液所測得之IC50 值(0.11~121.74 mg/mL)相比較,本研究所得之液蛋白及繫帶水解液具有良好的ACE 抑制活性。
The pasteurized liquid egg white and chalazae from domestic egg processing manufacturer were used as the raw materials in this study. The hydrolysis conditions (i.e. liquid egg white solid percentage (3, 4 and 5%), reaction temperature (45, 50 and 55℃), liquid egg white pH (pH 5, 7 and 9), and Flavourzyme 1000L dosage (4000, 5000 and 6000 unit/g liquid egg white solid) of liquid egg white for producing the protein hydrolysates were studied by an L9 orthogonal array of the Taguchi method. Results showed that the highest degree of hydrolysis (DH) could be obtained when the substrate concentration was 5% egg white solid and Flavourzyme 1000L dosage was 6000 unit/g liquid egg white solid, at pH 5 and 55℃. The DH of egg white was 9.21-18.68% and 12.27-32.29% after 1 and 8 hr hydrolysis, respectively. The DH increased with the increasing reaction time. Moreover, the texture of liquid egg white hydrolysates after pasteurization at 75℃ for 30 min formed liquid with some of precipitates, semi soft gel with fluidity or solid gel, depending on the pH and degree of hydrolysis. The degree of hydrolysis of egg chalazae also increased with the increasing the reaction times (1, 2, 4, and 8 hr).
The sialic acids content of liquid egg white and chalazae determined by HPAEC-PAD (High Performance Anion Exchange Chromatography-Pulsed Amperometric Detection) was 0.031% (db) and 0.27% (db), respectively. The results of angiotensin converting enzyme (ACE) inhibition showed that the highest degree of ACE inhibition could be obtained when the substrate concentration of the liquid egg white was 4% or 5% and Flavourzyme 1000L dosage was 4000 unit/g liquid egg white solid, at pH 5 and 55℃. The results of this study represented that the degree of hydrolysis of egg white was not proportional to the ability of ACE inhibition. The ability of ACE inhibition of egg chalazae hydrolysates increased with increasing in the reaction time (1, 2, 4, 8 hr) when the substrate concentration was 2.6% egg chalazae solid and Flavourzyme 1000L dosage was 6000 unit/g egg chalazae solid, at pH 5 and 55℃. Moreover, the content of sialic acid in egg chalazae would not be affected by the hydrolysis process of egg chalazae.
The IC50 value of liquid egg white hydrolysate without pasteurization was 0.40 mg/mL, and the pasteurized liquid egg white hydrolysate was 0.37 mg/mL when hydrolyzed at the reaction condition of the highest ACEI% of liquid egg white hydrolysates. Compared with the IC50 values (0.11~121.74 mg/mL) obtained from the various protein hydrolysates in the previous reports, the liquid egg white and chalazae hydrolysates in our report possess good ACE inhibition ability.
目錄
第一章、緒言----------------------------------------------- 1
第二章、文獻整理------------------------------------------- 3
一、雞蛋------------------------------------------------ 3
(一)雞蛋的化學性質--------------------------------- 3
(二)雞蛋的利用------------------------------------- 4
(三)液蛋白及繫帶----------------------------------- 4
二、唾液酸---------------------------------------------- 10
(一)唾液酸的歷史背景------------------------------- 10
(二)唾液酸的結構特性------------------------------- 13
(三)唾液酸的生理機能------------------------------- 14
(四)唾液酸的生合成--------------------------------- 16
(五)唾液酸的製備方法------------------------------- 18
(六)唾液酸之合成類似物----------------------------- 20
(七)液蛋白及繫帶中的唾液酸------------------------- 22
(八)唾液酸目前之應用及未來之發展------------------- 23
三、蛋白質水解液的生產與應用---------------------------- 25
(一)蛋白質水解液的歷史背景------------------------- 25
(二)蛋白質水解液的生理活性------------------------- 25
(三)抑制血管收縮素轉化酶活性胜肽與高血壓之關係----- 29
(四)蛋白質水解液的製備----------------------------- 31
(五)蛋白質水解液之未來發展------------------------- 34
第三章、材料與方法----------------------------------------- 36
一、實驗材料-------------------------------------------- 36
(一)液蛋白及繫帶----------------------------------- 36
(二)藥品------------------------------------------- 36
二、樣品製備-------------------------------------------- 36
(一)液蛋白酸水解液製備----------------------------- 36
(二)液蛋白酵素水解液製備--------------------------- 37
(三)繫帶酵素水解液製備----------------------------- 37
三、實驗設計法與統計分析-------------------------------- 38
(一)直交表試驗設計法(Orthogonal Designs)----------- 38
(二)統計分析--------------------------------------- 39
四、實驗方法-------------------------------------------- 39
(一)蛋白質水解酵素活性測定------------------------- 39
(二)蛋白質水解酵素之蛋白質含量測定(Bradford 法)--- 40
(三)液蛋白及繫帶水解液之水解度測定----------------- 40
(四)液蛋白及繫帶水解液之色澤測定------------------- 41
(五)液蛋白及繫帶水解液中唾液酸之分離與純化--------- 41
(六)液蛋白及繫帶水解液之唾液酸含量測定------------- 41
(七)酵素水解液蛋白及繫帶水解液之胜肽濃度測定------- 43
(八)酵素水解液之血管緊縮素轉化酶活性抑制率(ACEI%)
測定------------------------------------------------ 43
(九)酵素水解液之血管緊縮素轉化酶活性半抑制濃度(IC50)
測定------------------------------------------------ 44
第四章、結果與討論----------------------------------------- 46
一、水解條件預實驗對液蛋白水解液之影響------------------ 46
(一)以鹽酸與硫酸水解液蛋白之情形------------------- 46
(二)以GRINDAMYL PR59 酵素水解液蛋白之情形------ 46
(三)以Flavourzyme 1000L 和 Neutrase 0.8L 酵素於不同水
解時間下水解的情形---------------------------- 47
(四)結語------------------------------------------- 53
二、蛋白質水解酵素活性測定和蛋白質定量------------------ 53
三、以田口氏直交表實驗設計方法評估水解條件對液蛋白水解液
之水解度和殺菌後之性狀的影響----------------------- 54
(一)水解1 小時之液蛋白水解液性狀------------------- 55
(二)水解2 小時之液蛋白水解液性狀------------------- 58
(三)水解4 和8 小時之液蛋白水解液性狀--------------- 65
(四)結語------------------------------------------- 72
四、繫帶之蛋白質水解試驗-------------------------------- 72
五、液蛋白及繫帶中唾液酸的純化和定量-------------------- 75
(一)液蛋白----------------------------------------- 75
(二)繫帶------------------------------------------- 77
六、製備具有抗高血壓活性胜肽液蛋白及繫帶水解液之最佳水解
條件----------------------------------------------- 79
(一)液蛋白---------------------------------------- 80
(二)繫帶------------------------------------------ 81
七、酵素水解繫帶蛋白質對於唾液酸含量之影響------------- 86
八、液蛋白和繫帶水解液之最高ACEI%及其IC50 值---------- 87
(一)液蛋白之ACEI%-------------------------------- 87
(二)繫帶之ACEI%---------------------------------- 88
(三)液蛋白水解液活性胜肽之IC50 值------------------- 90
第五章、結論--------------------------------------------- 92
第六章、參考文獻----------------------------------------- 94


表次
表一、 雞蛋中各組成百分比---------------------------------- 4
表二、 雞蛋蛋白中之蛋白質種類------------------------------ 5
表三、 雞蛋中不同組成蛋白質之胺基酸組成-------------------- 6
表四、 各國家所使用的液蛋殺菌條件-------------------------- 9
表五、 唾液酸衍生物之縮寫及其取代基------------------------ 14
表六、 雞蛋中各部分的唾液酸含量---------------------------- 23
表七、 不同食品蛋白質來源之ACEI 胜肽---------------------- 28
表八、 Flavourzyme 1000L、Neutrase 0.8L 及GRINDAMYL PR59 蛋
白水解酵素之基本性質-------------------------------- 34
表九、 液蛋白水解試驗之L9 直交表--------------------------- 39
表十、 HPAEC-PAD 偵測器電位設定-------------------------- 42
表十一、 HPAEC-PAD 梯度流洗條件--------------------------- 43
表十二、 鹽酸與硫酸液蛋白水解液之性狀比較------------------ 47
表十三、 經Flavourzyme 1000L 和 Neutrase 0.8L 酵素水解1 小時且
經121℃加熱20 分鐘後之液蛋白水解液性狀------------ 49
表十四、 經Flavourzyme 1000L 和 Neutrase 0.8L 酵素水解8 小時小
時且經121℃加熱20 分鐘後之液蛋白水解液性狀-------- 50
表十五、 經Flavourzyme 1000L 和 Neutrase 0.8L 酵素水解24 小時
且經121℃加熱20 分鐘後之液蛋白水解液性狀---------- 52
表十六、 經Flavourzyme 1000L 水解1 小時之液蛋白水解液之水解度
及加熱殺菌(75℃,30 min)後之性狀------------------ 56
表十七、 經Flavourzyme 1000L 水解1 小時之液蛋白水解液之水解度
及加熱殺菌(75℃,30 min)後之性狀------------------ 60
表十八、 經Flavourzyme 1000L 水解2 小時之液蛋白水解液之水解度
及加熱殺菌(75℃,30 min)後之性狀---------------- 63
表十九、 經Flavourzyme 1000L 水解4 小時之液蛋白水解液之水解度
及加熱殺菌(75℃,30 min)後之性狀------------------ 67
表二十、 經Flavourzyme 1000L 水解8 小時之液蛋白水解液之水解度
及加熱殺菌(75℃,30 min)後之性狀------------------ 69
表二十一、 經Flavourzyme 1000L 水解1、2、4 和8 小時之水解度、
色差和加熱殺菌(75℃,30 min)後之性狀----------- 74
表二十二、 液蛋白及繫帶之唾液酸含量------------------------ 79
表二十三、 經Flavourzyme 1000L 水解1 小時之液蛋白水解液之水解
度及加熱殺菌(75℃,30 min)後之ACEI%-----------
82

表二十四、 經Flavourzyme 1000L 水解2 小時之液蛋白水解液之水解
度及加熱殺菌(75℃,30 min)後之ACEI%----------- 84
表二十五、 不同水解時間下繫帶水解液之水解度及ACEI%。水解條
件為液蛋白固形物含量為2.6%、反應溫度為55℃、反
應液pH 值為5 及Flavourzyme 1000L 劑量為6000 unit/g
liquid egg white solid ------------------------------ 85
表二十六、 繫帶蛋白質水解及殺菌(75℃,30min)步驟對於唾液酸
含量之影響-------------------------------------- 86
表二十七、 殺菌(75℃,30min)前後通過MWCO 3kDa 液蛋白水解
液之ACEI%------------------------------------- 88
表二十八、 殺菌(75℃,30min)前後通過MWCO 3kDa 繫帶水解液
之ACEI%--------------------------------------- 90
表二十九、 殺菌(75℃,30 min)前後液蛋白水解液之IC50------- 91


圖次
圖一、 本論文之實驗架構。------------------------------------- 2
圖二、 雞蛋之構造圖------------------------------------------- 3
圖三、 目前雞蛋之加工及應用----------------------------------- 7
圖四、 液蛋之生產製作流程------------------------------------- 8
圖五、 人體細胞內N-glycolylneuraminic acid(NeuGc)的可能生合成途
徑----------------------------------------------------- 12
圖六、 Neu5Ac2en 之化學結構----------------------------------- 13
圖七、 唾液酸的化學結構--------------------------------------- 14
圖八、 唾液酸的生合成途徑------------------------------------- 17
圖九、 化學法合成唾液酸之反應機制----------------------------- 19
圖十、 Zanamivir 的化學結構------------------------------------ 21
圖十一、 Sialy-LewisX 的化學結構-------------------------------- 22
圖十二、 人體內血壓升高之機制--------------------------------- 30
圖十三、 經Flavourzyme 1000L(a)和Neutrase 0.8L(b)水解1 小時並
經121℃加熱20 分鐘後的液蛋白水解液照片--------------- 48
圖十四、 經Flavourzyme 1000L(a)和Neutrase 0.8L(b)水解8 小時並
經121℃加熱20 min 後之液蛋白水解液照片--------------- 50
圖十五、 經Flavourzyme 1000L(a)和Neutrase 0.8L(b)水解24 小時
並經121℃加熱20 min 後之液蛋白水解液照片-------------- 51
圖十六、 經Flavourzyme 1000L 水解1、8 及24 小時並經121℃加熱20
min 後的液蛋白水解液照片;液蛋白反應液的pH值皆為5----- 52
圖十七、 酵素活性測定(a)及蛋白質濃度測定之標準曲線(b)-------- 54
圖十八、 液蛋白固形物含量、酵素反應溫度、pH 值及酵素添加量對液
蛋白水解液(水解1 小時)的水解度(a)、L 值(b)、a 值(c)
和b 值(d)之影響--------------------------------------- 57
圖十九、 經Flavourzyme 1000L 水解1 小時並經殺菌後液蛋白水解液之
照片。液蛋白水解反應溫度分別為45℃(a)、50℃(b)和55℃
(c)------------------------------------------------- 59
圖二十、 液蛋白固形物含量、酵素反應溫度、pH 值及酵素添加量對液
蛋白水解液(水解1 小時)的水解度(a)、L 值(b)、a 值(c)
和b 值(d)之影響--------------------------------------- 61
圖二十一、 經Flavourzyme 1000L 水解2 小時並經殺菌後液蛋白水解液
之照片。液蛋白水解反應溫度分別為45℃(a)、50℃(b)
和55℃(c)----------------------------------------- 62
圖二十二、 液蛋白固形物含量、酵素反應溫度、pH 值及酵素添加量對
液蛋白水解液(水解2 小時)的水解度(a)、L 值(b)、a
值(c)和b 值(d)之影響-------------------------------- 64
圖二十三、 經Flavourzyme 1000L 水解4 小時並經殺菌後液蛋白水解液
之照片。液蛋白水解反應溫度分別為45℃(a)、50℃(b)
和55℃(c)---------------------------------------- 66
圖二十四、 液蛋白固形物含量、酵素反應溫度、pH 值及酵素添加量對
液蛋白水解液(水解4 小時)的水解度(a)、L 值(b)、a
值(c)和b 值(d)之影響-------------------------------- 68
圖二十五、 液蛋白固形物含量、酵素反應溫度、pH 值及酵素添加量對
液蛋白水解液(水解8 小時)的水解度(a)、L 值(b)、a
值(c)和b 值(d)之影響-------------------------------- 70
圖二十六、 液蛋白固形物含量、酵素反應溫度、反應液之pH 值及酵素
使用量對液蛋白水解原液的L 值(a)、a 值(b)和b 值(c)
之影響--------------------------------------------- 71
圖二十七、 經不同水解時間(1、2、4 和8 小時)之加熱殺菌後繫帶水
解液之性狀。水解條件為液蛋白固形物含量為3%、反應溫
度為55℃、反應液pH 值為5 及Flavourzyme1000L 劑量為
6000 unit/g liquid egg white solid ----------------------- 73
圖二十八、 經酸水解後液蛋白樣品中唾液酸之Dowex HCR-W2 管柱層
析圖----------------------------------------------- 75
圖二十九、 經Dowex HCR-W2 純化後之酸水解液蛋白之Dowex 1×8 管
柱層析圖------------------------------------------- 76
圖三十、 唾液酸標準品(100 pmol/25μL)(a)及液蛋白中純化唾液
酸(b)之HPAEC-PAD 之層析圖------------------------ 76
圖三十一、 經酸水解後繫帶樣品中唾液酸之Dowex HCR-W2 管柱層析
圖------------------------------------------------- 77
圖三十二、 經Dowex HCR-W2 純化後之酸水解繫帶之Dowex 1×8 管柱
層析圖--------------------------------------------- 78
圖三十三、 唾液酸標準品(100 pmol/25μL)(a)及繫帶中純化唾液酸(b)
之HPAEC-PAD 之層析圖----------------------------- 78
圖三十四、 液蛋白固形物含量、反應溫度、pH 值及酵素添加量對液蛋
白水解液(水解1 小時)ACEI%之影響------------------ 81
圖三十五、 液蛋白固形物含量、反應溫度、pH 值及酵素添加量對液蛋
白水解液(水解2 小時)ACEI%之影響------------------ 83
圖三十六、 Flavourzyme 1000L 酵素水解時間對繫帶水解液ACEI%之影
響------------------------------------------------- 85
圖三十七、 不同水解時間之液蛋白水解液之ACEI%。水解條件為液蛋
白固形物含量為4%、反應溫度為50℃、反應液pH 值為5
及酵素使用量為4000 unit/g liquid egg white solid --------- 87
圖三十八、 不同水解時間之繫帶水解液之ACEI%。水解條件為液蛋白
固形物含量為4%、反應溫度為50℃、反應液pH 值為5 及
Flavourzyme1000L 劑量為4000 unit/g liquid egg white solid
--------------------------------------------------- 89
圖三十九、 三個不同稀釋度之殺菌前(a)及殺菌後(b)液蛋白水解液之ACEI%與其胜肽濃度(μg/mL)---------------------- 91
中國國家標準。2002。經濟部標準檢驗局。
中華穀類食品工業技術研究所編著。2002。殺菌液蛋運用烘焙加工及團膳手冊。
仇英海。2002。雞蛋黃粉中唾液酸的提取。江南大學碩士論文。
何佳倫,楊炳輝。2003。國際液蛋加工及技術開發研討會。東海大學省政府研究大樓會議室。92年12月10∼11日。
李連生。2001。唾液酸類高碳糖的全合成研究。中國科學院上海有機化學研究所博士論文。
沈明來。2004。試驗設計學,第三版,pp. 349-367。九洲圖書文物有限公司,台北市。
林玫欣。1999。鯖魚肉與內臟水解物之抗氧化性研究。海洋大學食品科學系碩士論文。
金鼎蛋品科技有限公司產品簡介。鳳山市,台灣。
姜雲慶。2001。雞蛋清蛋白水解物的製備及其功能性質的研究。東北農業大學碩士論文。
胡維正。1999。抑制血管收縮素轉化酶寡胜肽的合成及微脂粒之製備對天生高血壓鼠之抗高血壓作用。台灣大學食品科技研究所碩士論文。
郁凱衡。1996。機能性食品(上)。食品資訊121:22-31。
張志豪。2001a。酵素有機合成唾液酸衍生物。台灣大學生化科學研究所碩士論文。
張為憲。2001b。食品化學,第一版,pp. 448-449。華香園出版社,台北市。
張勝善。1986。蛋品加工學。第一版,pp. 68。華香園出版社。台北市。
許秀娟。1997。自明膠及乳清蛋白水解液中製備血管收縮素轉化酶抑制劑之研究。台灣大學食品科技研究所碩士論文。
許麗芬。1999。有機酸水解雞蛋白之動力學。台灣大學食品科技研究所碩士論文。
陳姿利。1999。利用雞蛋白水解物生產血管收縮素轉化酶抑制劑。台灣大學食品科技研究所博士論文。
陳彥伯。2004。克佛爾抑制血管緊縮素轉化酶之能力及血管緊縮素轉化酶抑制胜肽於大腸桿菌中之表現。台灣大學畜產學研究所碩士論文。
曾見昇。2001。微生物麩胺醯胺酸轉胺酶對麵糰物化性質之改良與其在烘焙上之應用。台灣大學農化所碩士論文。
葉震浩。1999。雞蛋白之水解與應用之研究。台灣大學農化所碩士論文。
劉劍秋。2003。蛋乳生物發酵製品的研製。東北農業大學碩士論文。
蔡采芳。1997。雞蛋蛋白水解物之製備及其性質之研究。台灣大學農化所碩士論文。
鄭志永。2000。聚唾液酸及唾液酸單體的發酵生產研究。無錫輕工業大學碩士論文。
鄭靜桂。1997。蛋白質之水解與水解液之利用。食品工業,29:10-17。
AACC. 2000. Approved method of the American Association of Cereal Chemist. 10th ed. Minnesota: AACC.
Beau, J. M., Schauer, R., Haverkamp, J., Kamerling, J. P., Dorland, L., and Vlegenthart, J. F. 1984. Chemical behaviour of cytidine 5’-Monophospho-N-acetyl-beta-D-neuraminic acid under neutral and alkaline conditions. Eur. J. Biochem. 140: 203-208.
Bulai, T., Bratosin, D., Artenie, V., and Montreuil, J. 2003. Uptake of sialic acid by human erythrocyte. Characterization of a transport system. Biochimie. 85: 241-244.
Camino, C. C., and Maria, L. J. 1990. High production of polysialic acid by Escherichia coli k-92 grow in a chemically defined medium regulated by temperature. Biol. Chem. Hoppe-Seyler. 371: 1101-1106.
CDC. 1999. Neraminidase inhibitor for treatment of influenza A & B infections. MMWR . 48: 1-9.
Chen, H. M., Muramoto, K., and Yamauchi, F. 1995. Structural analysis of antioxidative peptides from soybean β-conglycinin. J. Agric. Food Chem. 43: 574-578.
Chen, H. M., Muramoto, K., and Yamauchi, F., and Nokihara, K. 1996. Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digest of a soybean protein. J. Agric. Food Chem. 44: 2619-2622.
Cheung, H. S., Wang, F. L., Ondetti, M. A., Soba, E. F., and Cushman, D. W. 1980. Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. J. Bio. Chem. 255: 400-407.
Colman, P. M., Varghese, J. N., and Laver, W. G. 1983. Structure of catalytic and antigenic sites in influenza virus neuraminidase. Nature 303: 41-44.
Cornforth, J. W., Danies, M. E., and Gottschalk A. 1957. Synthesis of N-acetylneuraminic acid (Lactaminic acid, O-sialic acid). Proc. Chem. Soc. Lond. 1: 25-26.
Cornforth, J. W., Firth, M. E., and Gottschalk, A. 1958. Synthesis of N-acetylneuraminc acid. Biochem. J. 68: 57-60.
Dionex Technical Note 41. 2000. Analysis of sialic acids using high-performance anion-exchange chromatography. Dionex Corporation : Sunnyvale, California.
Dormitzer, P. R., Sun, Z. Y. J., Blixt, O., Paulson, J. C., Wagner, G., and Harrison S. C. 2002. Specificity and affinity of sialic acid binding by the rhesus rotavirus VP8* core. J. Virol. 76: 10512-10517.
Ehlers, M. R., and Riordan, J. F. 1989. Angiotensin-converting enzyme new concepts converting its biological role. Biochemistry. 28: 5311-5317.
Ferreira, S. H., Bartelt, D. C., and Greene, L. J. 1970. Isolation of bradykinin-potentiating peptides from Bothrops jararaca venom. Biochemistry 9: 2583-2593.
Fox, P. F., and Mulvihill, D. M. 1993. Development in milk protein processing. Food Sci. Tech. Tody. 7: 152-161.
Frokjaer, S. 1994. Use of hydrolysates for protein supplementation. Food Technol. 48: 86-88.
Fujita, H., and Yoshikawa, M. 1999. LKPNM: a prodrug-type ACE-inhibitory peptide derived from fish protein. Immunopharmacology 44: 123-127.
Fujita, H., Yokoyama, K., and Yoshikawa, M. 2000. Classification and antihypertensive activity of angiotensin I-converting enzyme inhibitory peptides derived from food proteins. J. Food Sci. 65: 546-569.
Gehrke, C. W., Wall, L. L., Absheer, J. S., Kaiser, F. E., and Zumwalt, R. W. 1985. Sample preparation for chromatography of amino acids: acid hydrolysis of proteins. J. - Assoc. Off. Anal. Chem. 68:811-821.
Harris, J. I., Cole, R. D., and Pon, N. G. 1956. The kinectic of acid hydrolysis of dipeptides. Biochemical. J. 62: 154-159.
Haverkamp, J. J., Schauer, R., Wember, M., Farriaux, J. P., Kamerling, J. P., Versluix, C., and Vliegernthart, F. G. 1976. Neuraminic acid derivatives newly discovered in humans: N-acetyl-9-O-L-lactoylneuraminic acid, N,9-O-diacetylneuraminic acid and N-acetyl-2,3-dehydro-2- deoxyneuraminic acid. Hoppe-Seyler’s Z. Physiol. Chem. 357: 1699-1705.
Hazato, T., and Kase, R. 1986. Isolation of angiotensin-converting enzyme inhibitor from porcine plasma. Biochem. Biophys. Res. Comm. 139: 52-55.
Humphrey, A. J., Fremann, C., Critchley, P., Malykh, Y., Schauer, R., and Bugg T. D. H. 2002. Biological properties of N-acyl and N-haloacetyl neuraminic acids: processing by enzymes of sialic acid metabolism, and interaction with influenza virus. Biomed. Chem. 10: 3175-3185.
Iijima, R., Takahashi, H., Namme, R., Ikegami, S., and Yamazaki, M. 2004. Novel biological function of sialic acid (N-acetylneuraminic acid) as a hydrogen peroxide scavenger. FEBS Letter. 561: 163-166.
Inoue, S.; Kitajima, K. and Inoue, Y. 1996. Identification of 2-keto-3-deoxy-D-glycero-D-galactonononic acid (KDN, deaminoneuraminic Acid) residues in mammalian tissues and human lung carcinoma cells-Chemical evidence of the occurrence of KDN glycoconjugates in mammals. J. Biol. Chem. 271: 24341-24344.
Jacobs, C. L., Goon, S., Yarema, K. J., Hinderlich, S., Hang, H. C., Chai, D. H., and Bertozzi, C. R. 2001. Substrate specificity of the sialic acid biosynthetic pathway. Biochemstry. 40: 12864-12874.
Juneja, L. R. 2000. Biological characteristics of egg component, specifically sialyloligosaccharides in egg yolk. In: Egg nutrition and biotechnology. Sim, J. S., Nakai, S., and Guenter, W. (Eds). Oxon, UK: CAB International. pp. 233-242.
Juneja, L. R., Koketsu, M., Nishimoto, K., Kim, M., Yamamoto, T., and Itoh, T., 1991. Large-scale preparation of sialic acid from chalazae and egg yolk membrane. Carbohydr. Res. 214:179-186.
Juneja, L. R., Koketsu, M., Kawanami, H., Sasaki, K., Kim, M., and Yamamoto, T. 1994. Large-scale preparation of sialic acid and its derivatives from chalazae and delipidated egg yolk. In: Sim, J. S., and Nakai, S. (Eds). Egg uses and processing technologies: New developments. Oxin, UK: CAB International. pp. 192-206.
Kelm, S., and Schauer, R. 1997. Sialic acids in molecular and cellular interactions. Inter. Rev. Cytol. 175: 137-240.
Kim, M. J., Hennen, W. J., Sweers, H. M., and Wong, C. H. 1988. Enzymes in carbohydrate synthesis-N-acetylneuraminic acid aldolase catalyzed-reactions and preparation of N-acetyl-2-deoxy-D-Neuraminic acid-derivatives. J. Am. Chem. Soc. 110: 6481-6486.
Kloczewiak, M., Timmons, S., Lukas, T. J., and Hawiger, J. 1984. Platelet receptor recognition sites on human fibrinogen: synthesis and structure function relation- ship of peptides corresponding to the carboxy terminal segment of the γ-chain. Biochem. 23: 1767-1774.
Kohama, Y., Matsumoto, S., Oka, H., Teramoto, T., Okabe, M., and Mimura, T. 1988. Isolation of angiotensin-converting enzyme inhibitor from tuna muscle. Biochem. Biophys. Res. Comm. 155: 332-337.
Kohler, G. O., and Palter, R. 1967. Studies on methods for amino acid analysis of wheat products. Cereal Chem. 44: 512-520.
Koketsu, M, Juneja, L. R, Kim, M., Ohata, M., Matsuura, F., and Yamamoto, T. 1993. Sialylglycopeptides of delipidated egg yolk fraction. J. Food Sci. 58: 743-747.
Koketsu, M., Nakata, K., Juneja, J.R., Kim, M., and Yamamoto, T. 1995a. Learning performance of egg yolk sialyloligosaccharides fraction. Oyo Tosbitsu Kagaku (in Japanese) 9: 15-18.
Koketsu, M., Seko, A., Juneja, L. R., Kim, M., Kashimura, F., and Yamamoto, T. 1995b. An efficient preparation and structural characterization of sialylglycopeptides from protease treated egg yolk. J. Carbohydr. Chem. 14: 858-861.
Koketsu, M., Nitoda, T., Juneja, L. R., Kim, M., Kashimura, F., and Yamamoto, T. 1995c. Sialylglycopeptides from egg yolk as an inhibitor of rotaviral infection. J. Agri. Food Chem. 43: 858-861.
Koketsu, M., Sakuragawa, E., Linhardt, R. J., and Ishihara, H. 2003. Distribution of N-acetylneuraminic acid and sialylglycan in eggs of the silky fowl. Br. Poult. Sci. 44:145-148.
Kragl, U., Gygax, D., Ghisalba, O., and Wandrey, C. 1991. Enzymatic 2-step synthesis of N-acetylneuraminc acid in the enzyme memebrane reactor. Angew. Chem., Int. ed. Eng. 30: 827-828.
Kuba, M., Takana, K., Tawata, S., Takeda, Y., and Yasuda, M. 2003. Angiotensin I-converting enzyme inhibitory peptides isolated from tofuyo fermented soybean food. Biosci. Biotechnol. Biochem. 67: 1278-1283.
Lai, H. M., 2001. Effects of hydrothermal treatment on the physicochemical properties of pregelatinized rice flour. Food Chem. 72:455-463.
Li, C. H., Matsui, T., Matsumoto, K., Yamazaki, R., and Kawazaki, T. 2002. Latent production of angiotensin I-converting enzyme inhibitors from buckwheat protein. J. Peptide Sci. 8: 267-274.
Li, Y. T., Nakagawa, H., Ross, S. A., Hannson, G. C., and Li, Y. T. 1990. A novel sialidase which releases 2,7-anhydro-alpha-N-acetylneuraminic acid from sialoglycocojugates. J. Biol. Chem. 265: 21629-21633.
Liardon, R., Friedman, M., and Philippossian, G. 1991. Racemization kinectics of free and protein-bond lysinoalanine (LAL) in strong acid media. Isomeric composition of bound LAL in processed proteins. J. Agric. Food Chem. 39: 531-537.
Lieske, B., and Konrad, G. 1994. Protein hydrolysis-the key to meat flavoring system. Food Rev. Int. 10: 287-312.
Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265-275.
Malykh, Y. N., Schauer, M. R., and Shaw, L. 2001. N-Glycolylneuraminic acid in human tumours. Biochimie. 83: 623-634.
Maru, I., Ohnishi, J., Ohta, Y., and Tsukada, Y. 2002. Why is sialic acid attracting interest now? Complete enzymatic synthesis of sialic acid with N-acylglucosamine 2-epimerase. J. Biosci. Bioeng. 93: 258-265.
Maruyama, S., and Suzuki, H. 1982. A peptide inhibitor of angiotensin I converting enzyme in the tryptic hydrolysate of casein. Agric. Biol. Chem. 46: 1393-1394.
Matoba, N., Usui, H., Fujita, H., and Yoshikawa, M. 1999. A novel anti-hypertensive peptide derived from ovalbumin induces nitric oxide-mediated vasorelaxation in an isolated SHR mesenteric artery. FEBS Letters 452:181-184.
Matsui, T., Yukiyoshi, A., Doi, S., Sugimoto, H., Yamada, H., and Matsumoto, K. 2002. Gastrointestinal enzyme production of bioactive peptides from royal jelly protein and their antihypertensive ability in SHR. J. Nutr. Biochem. 13: 80-86.
Matsumura, N., Fujii, M., Takeda, Y., Sugita, K., and Shimizu, T. 1993. Angiotensin I-converting enzyme inhibitory peptides derived from bonito bowels autolysate. Biosci. Biotech. Biochem. 57: 695-697.
Matthews, D. M., and Abidi, S. A. 1976. Peptide absorption. Gastroenterology 71: 151-161.
Meisel, H., and Frister, H. 1988. Chemical characterization of a caseino-phosphopeptides isolated from in vivo digests of a casein diet. Biol. Chem. Hoppe-Seyler. 369: 1275-1279.
Miguel, M., Recio, I., Gomez-ruiz, J. A., Ramos, M., and Lopez-fandino, R. 2004. Angiotensin I-converting enzyme inhibitory activity of peptides derived from egg white proteins by enzymatic hydrolysis. J. Food Prot. 67: 1914-1920.
Mine, Y., Ma, F., and Lauriau, S. 2004. Antimicrobial peptides released by enzymatic hydrolysis of hen egg white lysozyme. J. Agric. Food Chem. 52: 1088-1094.
Miyoshi, S., Ishikawa, H., Kaneko, T., Fukui, F., Tanakaka, H., and Maruyama, S. 1991. Agric. Biol. Chem. 55: 1313-1318.
Morgan, B. L. G., and Winick, M. 1980. Effects of administration of N-acetylneuraminic acid (NANA) on brain NANA content and behavior. J. Nutrition 110: 416-424.
Mykanen, H. M., and Wassermann, R. H. 1980. Enhanced absorption of calcium by caseino-phosphopeptides in Rachitic and normal chicks. J. Nutr. 110: 2141-2148.
Nakamura, Y., Yamamoto, N., Sakai, K., and Takano, T. 1995. Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin I-converting enzyme. J. Dairy Sci. 78: 1253-1257.
Nakano, K., Nakano, T., Ahn, D. U., and Sim, J. S. 1994. Sialic acid contents in chicken eggs and tissues. Canadian J. Animal Science 74: 601-606.
Oetke, C., Hinderlich, S., Brossmer, R., Reutter, W., Pawlita, M., and Keppler, O. 2001. Evidence for efficient uptake and incorporation of sialic acid by eukaryotic cells. Eur. J. Biochem. 268: 4553-4561.
Ondetti, M. A., Rubin, B., and Cushman, D. W. 1977. Design of specific inhibitor of angiotensin converting enzyme: a new class of orally active antihypertensive agent. Science 196:441-446.
Patridge, S. M., and Davis, H. F. 1950. Preferential release of aspartic acid during the hydrolysis of protein. Nature 165: 62-63.
Reutter, W., Kottgen, E., Bauer, C., and Gerok, W. 1982. Biological and significance of sialic acids. In: Schauer, R. (Ed). Sialic acids-chemistry, metabolism and function. Cell biology monographs. New York: Springer-Verlag. pp. 263-292.
Salvetti, A. 1990. Newer ACE inhibitor: a look at the future. Drugs 40: 800-828.
Sanger, F. 1952. The arrangement of amino acids in proteins. In: Anson, M. L., Bailey, k., and Edsall, J. T. (Eds). Advances in protein chemistry. New York: Academic Press Inc. pp. 18-29.
Schlimme, E., and Meisel, H. 1995. Bioactive peptides derived from milk proteins. Structural, physiological and analytical aspects. Nahrung 39: 1-20.
Seko, A., Koketsu, M., Nishizono, M., Enoki, Y., Ibrahim, H. R., Juneja, L. R., Kim, M., and Yamamoto, T. 1997. Occurrence of a sialylglycopeptides and free sialylglycans in hen’s egg yolk. Biochemical et Biophysica Acta 1335: 23-32.
Simon, E. S., Bednarski, M. D., and Whitesides, G. M. 1988. Synthesis of CMP-NeuAc from N-acetylglucosamine-generation of CTP from CMP using Adenylate kinase. J. Am. Chem. Soc. 110:7159-7163.
Skeggs, L. T., Marsh, W. H., Kahn, J. R., and Shumway, N. P. 1954. The existence of two forms of hypertension. J. Exp. Med. 99: 275-282.
Skeggs, L. T., Lentz, K. E., Kahn, J. R., Shumway, N. P., and Woods, K. R. 1956. The amino acid sequence of hypertension II. J. Exp. Med. 104: 193-197.
Stadelman, W. J., and Cotterill, O. J. 1986. Egg science and technology. 3rd ed. Westport, Connecticut: AVI Publishing Co., Inc..
Studdy, P. R., Lapworth, R., and Bird, R. 1983. Angiotensin-converting enzyme and its clinical significance – a review. J. Clin. Pathol. 36: 938-947.
Sugai, T., Kuboki, A., Hiramatsu, S., Okazaki, H., and Ohta, H. 1995. Improved enzymatic procedure for a preparative-scale synthesis of sialic acid and KDN. Bull. Chem. Soc. Jpn. 68: 3581-3589.
Suzuki, Y., Ito, T., Suzuki, T., Holland, R., JR., Chambers, T. M., Kiso, M., Ishida, H., and Kawaoka, Y. 2000. Sialic acid species as a determinant of the host range of influenza A virus. 74: 11825-11831.
Suzuki, Y., Nakao, T., Ito, T., Watanable, N., Toda, Y., Guiyun, X., Suzuki, T., Kobayashi, T., Kimura, Y., Yamada, A., Sugawara, K., Nishimura, H., Kitame, F., Nakamura, K., Deya, E., Kiso, M., and Hasegawa, A. 1992. Structure determination of gangliosides that bind to influenza A, B and C viruses by improved binding assay: strain-specific receptor epitopes in sialo-sugar chains. Virology 189: 121-131.
Tsuruki, T., Kishi, K., Masakazu, T., Tanaka, M., Matsukawa, Y., and Yoshikawa, M. 2003. Soymetide, an immunostimulating peptide derived from soybean β-conglycinin, is an fMLP agonist. FEBS Letters 540: 206-210.
Ukeda, H., Matsuda, H., Osajima, K., Matsufuji, H., Matsui, T., and Osajima, Y. 1992. Peptides from peptic hydrolyzate of heated sardine meat that inhibit angiotensin I converting enzyme. Nippon Nogeikagaku Kaishi 66: 25-29.
Varki, A. 1992. Diversity in the sialic acids. Glycobiology 2: 24-40.
von Itzstein, M. 2000. Sugars, receptors and drug discovery. Inaugural professorial lecture. Griffith University.
von Itzstein, M., Wu, W. Y., Kok, G. B., Peggs, M. S., Dyason, J. C., Jin, B., Phan, T. V., Smythe, M. L., White, H. F., Oliver, S. W., Colman, P. M., Varghese, J. N., Ryan, D. M., Woods, J. M., Bethell, R. C., Hotham, V. J., Cameron, J. M., and Penn, C. R. 1993. Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 363: 418-423.
Wang, B., Brand-Miller, J., McVeagh P., and Petocz, P. 2001. Concentration and distribution of sialic acid in human milk and infant formulas. Am. J. Clin. Nutr. 74: 540-515.
Warren L. 1959. The thiobarbituric acid assay of sialic acid. J. Biol. Chem. 234:1971-1975.
Whitehouse, M. W., and Zilliken, F. 1960. Isolation and determination of neuraminic (sialic) acids. Methods of Biochemical Analysis 8: 199-218.
Yamada, Y., Matoba, N., Usui, H., Onishi, K., and Yoshikawa, M. 2002. Design of a highly potent anti-hypertensive peptide based on ovokinin (2-7). Biosci. Biotechnol. Biochem. 66: 1213-1217.
Yamauchi, F., Chen, J. R., Muramoto, K., Iwabuchi, S., Asano, M., and Suetsuna, K. 1994. Isolation and utilization of the protein from okara. Report of the Soy Protein Research Committee 15: 22-27.
Yamauchi, K., Tomita, M., Goehl, T. J., and Ellison, R. T. 1993. Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment. Infect. Immun. 61: 719-728.
Yang, S., Yunden, J., Sonoda, S., Doyama, N., Lipkoeski, A. W., Kawamura, Y., and Yoshikawa, M. 2001. Rubiscolin, a δ selective opoid peptide derived from plant Rubisco. FEBS Letters 509:213-217.
Yang, Y., Marczak, E. D., Yokoo, M., Usui, H., and Yoshikawa, M. 2003. Isolation and antihypertensive effect of angiotensin I-converting enzyme (ACE) inhibitory peptides from Spinach Rubisco. 51: 4897-4902.
Ziak, M., Qu, B., Zuo, X., Zuber, C., Kanamori, A., Kitajima, K, Inoue, S., Inoue, Y., and Roth, J. 1996. Occurrence of poly(α2,8-deaminoneuraminic Acid) in mammalian tissues: widespread and developmentally regulated but highly selective expression on glycoproteins. Proc. Natl. Acad. Sci. USA 9: 2759-2763.
Zimmer, G., Suguri, T., Renter, G., Yu, R.K., Schauer, R., and Herrler, G. 1994. Modification of sialic acids by 9-O-acetylation is detected in human leucocytes using the lectin property of influenza C virus. Glycobilogy 4: 343-349.
http://www.autismrecovered.com/search.htm
http://www.cdc.gov/
http://www.cdc.gov/ncidod/diseases/flu/viruses.htm (美國CDC網站)
http://www.eggs.ab.ca/about/images/eggstructure2.gif
http://www.glycoscience.org/
http://www.gsk.com/index.htm
http://www.meducator.org/archive/20050214/02_ras.gif
http://www.rosescientific.com/Products/Chemicals/SialicAcid.htm
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top