跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.132) 您好!臺灣時間:2025/11/29 22:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林言彌
研究生(外文):Yen-Mi Lin
論文名稱:含入射波時任意三維浮體之全非線性流場模擬
論文名稱(外文):Simulations of Fully Nonlinear Flow Field with Incident Waves for Arbitrary 3-D Floating Bodies
指導教授:李宗翰李宗翰引用關係
指導教授(外文):Tzung-Hang Lee
學位類別:碩士
校院名稱:淡江大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:100
中文關鍵詞:次奇點全非線性DELTA方法時間域
外文關鍵詞:desingularizedfully nonlinearthe DELTA methodtime domain
相關次數:
  • 被引用被引用:1
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
應用The DELTA method (The Desingularized Eulerian-Lagrangian Time-domain Approach method)之數值模型於模擬分析船舶作航行運動時所產生的波浪,並對該運動所產生的波形加以分析計算。The DELTA method本身已將奇點佈於計算區域之外,相對於傳統做法而言,程式的複雜度減低,運算過程所需的時間亦減少。本論文使用造波器來模擬真實海面之波浪情形,共製造了三種不同波幅的入射波,來模擬海面的波浪。本論文所使用的入射波幅是取用三種入射波幅之中最大的入射波幅,目的除了模擬較大的海面波浪之外,還證明了The DELTA Method在處理大振幅入射波與船體周圍之情形時,是一相當穩定可靠的方法。當造波器所製造的二維波轉換為三維波之後,三維波即可被導入計算區域之中,並以此數值模型模擬船舶航行於類真實海面的情形下進行計算,最後將沿船體的波形與實驗值加以比較,比較結果顯示 The DELTA Method的數值結果是相當良好的。

The DELTA Method (The Desingularized Eulerian-Lagrangian Time-domain Approach method) is used in the numerical model to simulate the waves generated by ships. The DELTA Method reduces the complexities of the program and short the computation time because all the singularities are placed out of the computational domain.
A 2-D wave maker is used to generate three kind of incoming waves with different wave height to simulate the real sea conditions. In this thesis, The DELTA Method has proved itself to be a stable numerical method and have the strong ability in simulating ships sailing in arbitrary sea conditions. 2-D wave is produced and extended into 3-D wave, and then, introduced into the computational domain. The numerical model of the DELTA Method is applied to simulate the conditions of ships sailing in the real sea conditions. The numerical results are then compared with the experimental results. The comparisons show that The DELTA Method is stable and reliable.

中文摘要 ....................................................I
英文摘要 ...................................................II
目錄 ......................................................III
圖目錄 ......................................................V
第一章、緒論 ................................................1
1-1. 前言 ...............................................1
1-2. 研究背景 ...........................................2
1-3. 研究目的 ...........................................4
1-4. 研究方法 ...........................................5
第二章、理論方程式與條件 ....................................7
2-1. 物理模型 ...........................................7
2-2. 理論方程式 .........................................8
2-3. 起始條件 ...........................................9
第三章、數值模型分析 .......................................10
3-1. 邊界條件 ..........................................11
3-2. 數值分析方程式 ....................................12
3-3. 無因次化 ..........................................14
3-4. 次奇點距離-Ld .....................................15
3-5. 奇點佈置與網格分配 ................................16
3-6. Runge-Kutta Method 推進自由液面 ...................17
3-7. 奇點之重佈 ........................................18
3-8. 數值分析步驟 ......................................18
第四章、數值計算結果 .......................................19
4-1. 入射波之製造與導入計算區域 ........................19
4-1-1. 入射波之製造 ................................19
4-1-2. 入射波導入計算區域之方法 ....................31
4-2. Wigley 船型 .......................................32
4-2-1. 靜水平面 ....................................32
4-2-2. 含入射波作用下 ..............................44
4-3. Series60 船型 .....................................60
4-3-1. 靜水平面 ....................................60
4-3-2. 含入射波作用下 ..............................72
4-4. 合成波與計算結果 ..................................88
第五章、結論與未來研究方向 ..................................88
5-1. 結果討論 ..........................................88
5-2. 未來研究方向 ......................................89
參考文獻 ...................................................90
圖目錄
圖2.1 物理模型和座標系統 ....................................7
圖3.1 數值分析模型 .........................................16
圖4.1 楔型式造波器 .........................................20
圖4.2 楔型式造波器所造的波,振幅=0.1,t=10 ...................22
圖4.3 楔型式造波器所造的波,振幅=0.1,t=20 ...................22
圖4.4 楔型式造波器所造的波,振幅=0.1,t=30 ...................22
圖4.5 楔型式造波器所造的波,振幅=0.1,t=40 ...................23
圖4.6 楔型式造波器所造的波,振幅=0.1,t=50 ...................23
圖4.7 楔型式造波器所造的波,振幅=0.1,t=60 ...................23
圖4.8 楔型式造波器所造的波,振幅=0.1,t=70 ...................24
圖4.9 楔型式造波器所造的波,振幅=0.1,t=80 ...................24
圖4.10 楔型式造波器所造的波,振幅=0.15,t=10 .................25
圖4.11 楔型式造波器所造的波,振幅=0.15,t=20 .................25
圖4.12 楔型式造波器所造的波,振幅=0.15,t=30 .................25
圖4.13 楔型式造波器所造的波,振幅=0.15,t=40 .................26
圖4.14 楔型式造波器所造的波,振幅=0.15,t=50 .................26
圖4.15 楔型式造波器所造的波,振幅=0.15,t=60 .................26
圖4.16 楔型式造波器所造的波,振幅=0.15,t=70 .................27
圖4.17 楔型式造波器所造的波,振幅=0.15,t=80 .................27
圖4.18 楔型式造波器所造的波,振幅=0.2,t=10 ..................28
圖4.19 楔型式造波器所造的波,振幅=0.2,t=20 ..................28
圖4.20 楔型式造波器所造的波,振幅=0.2,t=30 ..................28
圖4.21 楔型式造波器所造的波,振幅=0.2,t=40 ..................29
圖4.22 楔型式造波器所造的波,振幅=0.2,t=50 ..................29
圖4.23 楔型式造波器所造的波,振幅=0.2,t=60 ..................29
圖4.24 楔型式造波器所造的波,振幅=0.2,t=70 ..................30
圖4.25 楔型式造波器所造的波,振幅=0.2,t=80 ..................30
圖4.26 Wigley船型 ..........................................33
圖4.27 靜水平面時間為零時之自由液面形狀 ....................34
圖4.28 靜水平面航速到達穩定時自由液面形狀,Fn=0.25,t=10 .....35
圖4.29 靜水平面航速到達穩定時自由液面形狀,Fn=0.25,t=20 .....36
圖4.30 靜水平面航速到達穩定時自由液面形狀,Fn=0.289,t=10 ....37
圖4.31 靜水平面航速到達穩定時自由液面形狀,Fn=0.289,t=20 ....38
圖4.32 靜水平面航速到達穩定時自由液面形狀,Fn=0.316,t=10 ....39
圖4.33 靜水平面航速到達穩定時自由液面形狀,Fn=0.316,t=20 ....40
圖4.34 靜水平面航速到達穩定時自由液面形狀,Fn=0.42,t=10 .....41
圖4.35 靜水平面航速到達穩定時自由液面形狀,Fn=0.42,t=20 .....42
圖4.36 DELTA Method 和實驗值(Farmer,1993)波形比較 ..........43
圖4.37 含入射波時間為零時之自由液面形狀 ....................46
圖4.38 含入射波航速到達穩定時之自由液面形狀,Fn=0.25,t=10 ...47
圖4.39 含入射波航速到達穩定時之自由液面形狀,Fn=0.25,t=20 ...48
圖4.40 含入射波航速到達穩定時之自由液面形狀,Fn=0.25,t=30 ...49
圖4.41 含入射波航速到達穩定時之自由液面形狀,Fn=0.289,t=10 ..50
圖4.42 含入射波航速到達穩定時之自由液面形狀,Fn=0.289,t=20 ..51
圖4.43 含入射波航速到達穩定時之自由液面形狀,Fn=0.289,t=30 ..52
圖4.44 含入射波航速到達穩定時之自由液面形狀,Fn=0.316,t=10 ..53
圖4.45 含入射波航速到達穩定時之自由液面形狀,Fn=0.316,t=20 ..54
圖4.46 含入射波航速到達穩定時之自由液面形狀,Fn=0.316,t=30 ..55
圖4.47 含入射波航速到達穩定時之自由液面形狀,Fn=0.42,t=10 ...56
圖4.48 含入射波航速到達穩定時之自由液面形狀,Fn=0.42,t=20 ...57
圖4.49 含入射波航速到達穩定時之自由液面形狀,Fn=0.42,t=30 ...58
圖4.50 DELTA Method 和Panel Method(廖培元,1998) 波形比較 ...59
圖4.51 Series60船型 ........................................61
圖4.52 靜水平面時間為零時之自由液面形狀 ....................62
圖4.53 靜水平面航速到達穩定時自由液面形狀,Fn=0.250,t=10 ....63
圖4.54 靜水平面航速到達穩定時自由液面形狀,Fn=0.250,t=20 ....64
圖4.55 靜水平面航速到達穩定時自由液面形狀,Fn=0.289,t=10 ....65
圖4.56 靜水平面航速到達穩定時自由液面形狀,Fn=0.289,t=20 ....66
圖4.57 靜水平面航速到達穩定時自由液面形狀,Fn=0.316,t=10 ....67
圖4.58 靜水平面航速到達穩定時自由液面形狀,Fn=0.316,t=20 ....68
圖4.59 靜水平面航速到達穩定時自由液面形狀,Fn=0.42,t=10 .....69
圖4.60 靜水平面航速到達穩定時自由液面形狀,Fn=0.42,t=20 .....70
圖4.61 DELTA Method和實驗值(Farmer,1993) 波形比較 ..........71
圖4.62 含入射波時間為零時自由液面形狀 ......................74
圖4.63 含入射波航速到達穩定時自由液面形狀,Fn=0.25,t=10 .....75
圖4.64 含入射波航速到達穩定時自由液面形狀,Fn=0.25,t=20 .....76
圖4.65 含入射波航速到達穩定時自由液面形狀,Fn=0.25,t=30 .....77
圖4.66 含入射波航速到達穩定時自由液面形狀,Fn=0.289,t=10 ....78
圖4.67 含入射波航速到達穩定時自由液面形狀,Fn=0.289,t=20 ....79
圖4.68 含入射波航速到達穩定時自由液面形狀,Fn=0.289,t=30 ....80
圖4.69 含入射波航速到達穩定時自由液面形狀,Fn=0.316,t=10 ....81
圖4.70 含入射波航速到達穩定時自由液面形狀,Fn=0.316,t=20 ....82
圖4.71 含入射波航速到達穩定時自由液面形狀,Fn=0.316,t=30 ....83
圖4.72 含入射波航速到達穩定時自由液面形狀,Fn=0.42,t=10 .....84
圖4.73 含入射波航速到達穩定時自由液面形狀,Fn=0.42,t=20 .....85
圖4.74 含入射波航速到達穩定時自由液面形狀,Fn=0.42,t=30 .....86
圖4.75 DELTA Method和Panel Method(廖培元,1998)波形比較 ....87
圖4.76 振幅0.01的入射波形與航速Fn=0.1所產生的波形 ........87
圖4.77 含入射波狀態與合成波之波形比較 ......................87

[1] Bai, K., J. Kim and H. Lee(1992),”A Localized Finite —Element Method for Nonlinear Free-Surface Wave Problems,”Proceedings 19th Symposium on Naval Hydrodynamics, Seoul,Korea,pp.90-114.
[2] Baker,G.R., D.I.Merion and S.A.Orszag(1982), “Generalized Vortex Methods for Free-Surface Flow Problems,” J.Fluid Mech.,123,pp.477-501
[3] Beck,R.F., Y.Cao and T-H.Lee(1993),“Fully Nonlinear Water Wave Computations Using the Desin-gularized Method,”Proceedings 6th, International Conference on Numerical Ship Hydrodynamics, University of Iowa.
[4] Bertram,V.(1990),“Ship Motion by Rankin Source Method,”Ship Technology Research, Vol.37, No.4, pp.143-152.
[5] Cao, Y., W. W. Schultz and R. F. Beck (1990), “ Three-dimensional,unsteady computations of nonlinear waves caused by underwater disturbance,” Proceedings 18th Symposium on Naval Hydrodynamics, Ann Arbor ,MI, USA , pp.417-427.
[6] Cao, Y., W. W. Schultz and R. F. Beck (1991a),” Three-dimensional Desingularized Boundary Integral Methods for Potential Problems,” International Journal of Num. Meth. Fluid, Vol.12,pp.785-803.
.
[7] Cao, Y., W. W. Schultz and R. F. Beck (1991b),” Two-dimensional Solitary Waves Generated By a Moving Disturbance,” 6th International Workshop on Water Waves and Floating Bodies, Woodshole,MA,USA
[8] Cao,Y., T.Lee and R.F.Beck(1992),”Computation of Nonlinear Waves Generated by Floating Bodies,” 7th International Workshop on Water Waves and Floating Bodies, Val de Reuil, France,pp.47-52.
[9] Cao,Y(1991),” Computations of Nonlinear Gravity Waves by a Desingularized Boundary Integral Method,” Ph.D.Diss.,Dept.of naval Archtechure and Marine Engineering,The University of Michigan,Ann Arbor,Usa.
[10] Celebi M.S. and R.F.Beck(1997),” Geometric Modeling for Fully Nonlinear Ship-Wave Interactions,” Journal of Ship Research, pp.17-25.
[11] Cointe,R., P.Geyer, B.King, B.Molin and M.Tramoni(1990),” Nonlinear and Linear Motion of a Rectangular Barge in a Perfect Fluid,” Proceedings 18th Symposium on Naval Hydrodynamics, Ann Arbor, MI, pp.85-99.
[12] Cummins,W.E.(1962) ,” The Impulse Response Function and Ship Motions , ” Schiffstechnik, Vol.9 pp.101-109.
[13] Dommermuth,D.G.and D.K.-P.Yue(1987),“ Numerical Simulations of Nolinear Axi-symmetric Flows with a Free Surface,” Journal of Fluid Mechanics, Vol.178, pp.195-219.
[14] Faltisen,O.M.(1977),” Numerical Solution of Transient Nonlinear Free Surface Motion Outside or Inside Moving Bodies,” Preceedings 2nd Conference On Numerical Ship Hydrodynamics, U.C. Berkeley,pp.347-357, University Extension Publications.
[15] Farmer, J. R.(1993),”A Finite Volume Multigrid Solution to the Three Dimensional Nonlinear Ship Wave Problems.”,Thesis of the Mechanical and Aerospace Engineering of Princeton University.
[16] Finklestein,A.(1957),” The Initial Value Problem for Transient water Waves,” Communication on Pure and Applied Mathematics, No.10, pp.511-522.
[17] Grosenbaugh,M.A. and R. W. Yeung (1988) ,” Nonlinear Bow Flows-An Experimental and Theoretical Investigation,” Proceedings 17th Symposium on Naval Hydrodynamics,The Hague,Netherland,pp.195-214.
[18] Hino,T. , “Computation of Free Surface Flow Around an Advancing Ship by the Navier-Stokes Equations” , Proceedings, Fifth International Conference on Numerical Ship Hydrodynamics, pp.103-117, 1989.
[19] Jensen,G.,V.Bertram and H.Soding(1989),” Ship Wave-Resistance computations , ” Proceedings 5th Int’l Conference on Numerical Ship Hydrodynamics, Hiroshima, Japan, pp.593-606.
[20] Kang,C.G. and I.Y.Gong(1990),“ A Numerical Solution Method for Three-Dimensional Nonlinear Free Surface Problems,” Proceedings 18th Symposium on Naval Hydrodynamics, Ann Arbor, MI, pp.427-438.
[21] Kim,Y.-H.and T. Lucas(1990),” Nonlinear Ship Waves ,” Proceedings 18th Symposium on Naval Hydrodynamics,Ann Arbor,Michigan,pp.439-452.
[22] Kim,Y.-H.and T. Lucas(1992),” Nonlinear Effects on High Block Ship at Low and Moderate speed,” Proceeding 19th Symposium on Naval Hydrodynamics, Seoul, Korea, pp.43-52.
[23] Kupradze,V.(1967),” On the Approximate Solution of Problem in Mathematical Physics,” Russ.Math.Surverys,Vol.22,pp.59-107.
[24] Lee,T.-H.(1992),“ Nonlinear Radiation Problems for a Surface-Piercing Body,” Ph.D. Thesis, Report No.323, Dept. of Naval Architecture and Marine Engineering, University of Michigan, Ann Arbor, MI.
[25] Lee and Chung(1999),”任意三維浮體之全非線性波計算”,中華民國力學學會第二十三屆全國力學會議
[26] Lee T-H and Lin, C.A (2000), ”Applications of Desingulari zation Techniques in Fully Nonlinear Wave Calculation for Arbitray 2-D Floating Bodies”,中國民國力學學會第二十四屆全國力學會議
[27] Lee T-H and Cheng, C.L (2001a), ”Fully Nonlinear Wave Calculations for Non-wall-sided Floating Bodies”, 第十三屆中國造船暨輪機工程研討會台北, 陽明山, 中國大飯店, 民國九十年二月
[28] Lee T-H and Chang, C.L. (2001b), ”運用除奇點技巧對任意浮體之全非線性波計算”, 中國航空太空學會學刊, 第三十三卷第二期第095-101頁, 民國九十年
[29] Lee T-H and Chang, C.L. (2001c), ”Fully Nonlinear Wave Computations for Arbitrary Floating Bodies Using The DELTA Method”, The 8th (2001) International Symposium On Practical Design of Ship and Other Floating Structures Shanghai, China, September16-21, 2001
[30] Lee and Chung(2001) ,” 入射波作用下任意三維浮體之全非線性波計算”,第23屆海洋工程研討會
[31] Lin,W.M.(1984),” Nonlinear Motion of the Free Surface near A Moving Body,” Ph.D. Dissertation, Dept. of Ocean Engineering, MIT.
[32] Lin,W.M.and D.K.-P.Yue(1984),“ Nonlinear Solution for Large Motions in the Time Domain,” Proceedings 18th Symposium on Naval Hydrodynamics, Ann Arbor, MI, PP.41-66.
[33] Longuet-Higgins,M.S.and E.D.Cokelet(1976),“ The Deformation of Steep Surface Waves on Water:I.A Numerical Method of Computation,” Proc. R. Soc. Lond, A350, pp.1-26
[34] Ogilive,T.F.(1964),” Recent Progress Toward the Understanding and Prediction of Ship Motions,” Proceedings 5th Symposium on Naval Hydrodynamics,Washington D.C.,pp.2-128.
[35] Raven,H.C.(1992),“ A Practical Nonlinear Method for Calculating Ship Wavema- king and Wave Resistance,” Proceeding 19th Symposium on Naval Hydrodynamics, Soul, Korea.
[36] Saubestre, V.(1990),” Numerical Simulation of Transient Nonlinear Free Surface Flows with Body Interaction,” Technical Report 90-52, Department of Mechanical and Environmental Engineering, University of California, Santa Barbara.
[37] Schultz, W.W. and S.W. Hong(1989),” Solution of Potential Problems Using an Overdeterminerd Complex Boundary Integral Method,” J. Comput. Phys., No.84, pp.414-440.
[38] S. Scorpio, R.Beck and F.Korsmeyer(1996),” Nonlinear Water Wave Computations Using a Multipole Accelerated,Desingularized Method,” Proceedings 21th Symposium of Naval Hydrodynamics,pp.34-43.
[39] Stoker,J.J.(1957),” Water Waves,” New York : Interscience Publishers.Vinje,T.and P.Breving(1981),“ Nonlinear Ship Motions,” Proceedings 3rd Int’l Conference on Numerical Ship Hydrodynamics, Paris.
[40] Von Karman, T.,(1930), “Calculation of Pressure Distribution on Airship Hulls”, NACA Technical Memorandum No. 574.
[41] Vinje, T.and P.Breving (1981), “Nonlinear Ship Motions”, Proceedings 3rd Int. Conference on Numerical Ship Hydrodynamics, Paris.
[42] Webster, W.C.(1975),“ The Flow about Arbitrary, Three-Dimensional Smooth Bodies,” J. Ship Research, No.19, pp.206-218.
[43] Wehausen,J.V.(1976), “ Initial Value Problem for the Motion in an Undulating Sea of a Body with Fixed Equilibrium Position,” Journal of Engineering Mathematics, Vol.1,pp.1-19.
[44] Zhou, Z. and M. Gu(1990),“ A Numerical Research of Nonlinear Body Wave Interactions,” Proceedings 18th Symposium on Naval Hydrodynamics”, Ann Arbor, MI, PP.103-118.
[45] 廖培元,”波浪中船體運動之三維解”,國立成功大學造船工程研究所碩士論文,中華民國八十七年六月

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top