|
行政院環保署環境檢驗所。2003。土壤中重金屬檢測方法—王水消化法。 (NIEAS 321.63B) Ahmad, A.R., Nye, P.H. 1990. Coupled diffusion and oxidation of ferrous iron in soils. I. Kinetics of oxygenation of ferrous iron in soil suspension. Journal of Soil Science, 41, 395-409. Alphei, J., Scheu, S. 1993. Effects of biocidal treatments on biological and nutritional properties of a mull-structured woodland soil. in: Soil Structure/Soil Biota Interrelationships, L.B.J. Kooistra, Ed. Elsevier. Amsterdam, pp.435-448. Appel, C., Ma, L.Q., Rhue, R.D., Reve, W. 2008. Sequential sorption of lead and cadmium in three tropical soils. Environmental Pollution, 155, 132-140. Arao, T., Kawasaki, A., Baba, K., Mori, S., Matsumoto, S. 2009. Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in japanese rice. Environmental Science & Technology, 43, 9361-9367. Armstron, W. 1969. Rhizosphere oxidation in rice - an analysis of intervarietal differences in oxygen flux from roots. Physiologia Plantarum, 22, 296-303. Armstron, W. 1970. Rhizosphere oxidation in rice and other species - a mathematical model based on oxygen flux component. Physiologia Plantarum, 23, 623-630. Armstron, W. 1971. Radial oxygen losses from intact rice roots as affected by distance from apex, respiration and waterlogging. Physiologia Plantarum, 25, 192-197. Balashova, V.V., Zavarzin, G.A. 1979. Anaerobic reduction of ferric iron by hydrogen bacteria. Microbiology, 48, 635-639. Begg, C.B.M., Kirk, G.J.D., Mackenzie, A.F., Neue, H.U. 1994. Root-induced iron oxidation and pH changes in the lowland rice rhizosphere. New Phytologist, 128, 469-477. Colmer, T.D. 2002. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep‐water rice (Oryza sativa L.). Annals of Botany, 91, 301-309. Curl, E.A., Truelove, B. 1986. The rhizosphere. Springer, Berlin, New York. Da Silva, M.J., Paim, A.P.S., Pimentel, M.F., Cervera, M.L., De la Guardia, M. 2010. Determination of mercury in rice by cold vapor atomic fluorescence spectrometry after microwave-assisted digestion. Analytica chimica acta, 667, 43-48. de Livera, J., McLaughlin, M.J., Beak, D., Hettiarachchi, G.M., Kirby, J. 2011a. Release of dissolved cadmium and sulfur nanoparticles from oxidizing sulfide minerals. Soil Science Society of America Journal, 75, 842-854. de Livera, J., McLaughlin, M.J., Hettiarachchi, G.M., Kirby, J.K., Beak, D.G. 2011b. Cadmium solubility in paddy soils: effects of soil oxidation, metal sulfides and competitive ions. Science of the Total Environment, 409, 1489-1497. Fan, J.-B., Zhang, Y.-L., Turner, D., Duan, Y.-H., Wang, D.-S., Shen, Q.-R. 2010. Root physiological and morphological characteristics of two rice cultivars with different nitrogen-use efficiency. Pedosphere, 20, 446-455. Fulda, B., Voegelin, A., Kretzschmar, R. 2013. Redox-controlled changes in cadmium solubility and solid-phase speciation in a paddy soil as affected by reducible sulfate and copper. Environmental Science & Technology, 47, 12775-83. Gao, S., Tanji, K.K., Scardaci, S.C., Chow, A.T. 2002. Comparison of redox indicators in a paddy soil during rice-growing season. Soil Science Society of America Journal, 66, 805-817. Gee, G.W., Bauder, J.W. 1979. Particle-size analysis by hydrometer - simplified method for routine textural analysis and a sensitivity test of measurement parameters. Soil Science Society of America Journal, 43, 1004-1007. Golden, D.C., Turner, F.T., SittertzBhatkar, H., Dixon, J.B. 1997b. Seasonally precipitated iron oxides in a vertisol of southeast Texas. Soil Science Society of America Journal, 61, 958-964. Hashimoto, Y., Yamaguchi, N. 2013. Chemical speciation of cadmium and sulfur K-Edge XANES spectroscopy in flooded paddy soils amended with zerovalent iron. Soil Science Society of America Journal, 77, 1189-1198. Iimura, K. 1981. Heavy metal problems in paddy soils in paddy soil. In: Heavy Metal Pollution in soils of Japan, K. Kitagishi et al.,Ed. Japan Scientific Societies Press. Tokyo, pp. 37−50. Inahara, M., Ogawa, Y., Azuma, H. 2007. Countermeasure by means of flooding in latter growth stage to restrain cadmium uptake by lowland rice. Journal of the Science of Soil and Plant Nutrition, Japan, 78, 149-155. Jackson, M.B., Armstrong, W. 1999. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biology, 1, 274-287. Justin, S.H.F.W., Armstrong, W. 1987. The anatomical characteristics of roots and plant response to soil flooding. The New Phytologist, 106, 465-495. Kogel-Knabner, I., Amelung, W., Cao, Z., Fiedler, S., Frenzel, P., Jahn, R., Kalbitz, K., Kolbl, A., Schloter, M. 2010. Biogeochemistry of paddy soils. Geoderma, 157, 1-14. Kirk, G.J.D., Ahmad, A.R., Nye, P.H. 1990. Coupled diffusion and oxidation of ferrous iron in soils. 11. A model of the diffusion and reaction of O2- ,Fe2+ ,H+ and HCO3- in soils and a sensitivity analysis of the model. Journal of Soil Science, 41, 411-431. Kirk, G.J.D., Bajita, J.B. 1995. Root-Induced iron oxidation, pH changes and zinc solubilization in the rhizosphere of lowland rice. New Phytologist, 131, 129-137. Labrenz, M., Banfield, F.J. 2004. Sulfate-reducing bacteria-dominated biofilms that precipitate ZnS in a subsurface circumneutral-pH mine drainage system. Microbial Ecology, 47, 205-217. Lemon, E.R., Erickson, A.E. 1952. The measurement of oxygen diffusion in the soil with a platinum microelectrode. Soil Science Society of America Proceedings, 16, 160-163. Li, Y., Yu, S., Strong, J., Wang, H. 2012. Are the biogeochemical cycles of carbon, nitrogen, sulfur, and phosphorus driven by the “FeIII–FeII redox wheel” in dynamic redox environments? Journal of Soils and Sediments, 12, 683-693. Liesack, W., Schnell, S., Revsbech, N.P. 2000. Microbiology of flooded rice paddies. FEMS Microbiology Reviews, 24, 625-645. Lindsay, W.L. 1979. Chemical equilibria in soils. John Wiley and Sons Ltd, Chichester, UK. Liu, H., Zhang, J., Christie, P., Zhang, F. 2008. Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil. Science of the Total Environment, 394, 361-368. Liu, W., Zhu, Y., Smith, F., Smith, S. 2004. Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture? Journal of Experimental Botany, 55, 1707-1713. Lovley, D.R., Phillips, E.J.P. 1988. Manganese inhibition of microbial iron reduction in anaerobic sediments. Geomicrobiology Journal, 6, 145-155. Magneschi, L., Perata, P. 2009. Rice germination and seedling growth in the absence of oxygen. Annals of Botany, 103, 181-196. Mahmood, T., Mehnaz, S., Fleischmann, F., Ali, R., Hashmi, Z.H., Iqbal, Z. 2014. Soil sterilization effects on root growth and formation of rhizosheaths in wheat seedlings. Pedobiologia, 57, 123-130. MartInez, C.E., McBride, M.B., Kandianis, M.T., Duxbury, J.M., Yoon, S.-j., Bleam, W.F. 2002. Zinc−sulfur and cadmium−sulfur association in metalliferous peats: evidence from spectroscopy, distribution coefficients, and phytoavailability. Environmental Science & Technology, 36, 3683-3689. McBride, M.B. 1994. Environmental chemistry of soils. Oxford University Press. New York, USA. McLean, E.O. 1982. Chemical equilibrations with soil buffer systems as bases for future soil testing programs. Communications in Soil Science and Plant Analysis, 13, 411-433. McNamara, N.P., Black, H.I.J., Beresford, N.A., Parekh, N.R. 2003. Effects of acute gamma irradiation on chemical, physical and biological properties of soils. Applied Soil Ecology, 24, 117-132. Mei, X.Q., Wong, M.H., Yang, Y., Dong, H.Y., Qiu, R.L., Ye, Z.H. 2012. The effects of radial oxygen loss on arsenic tolerance and uptake in rice and on its rhizosphere. Environmental Pollution, 165, 109-117. Mei, X.Q., Ye, Z.H., Wong, M.H. 2009. The relationship of root porosity and radial oxygen loss on arsenic tolerance and uptake in rice grains and straw. Environmental Pollution, 157, 2550-2557. Murase, J., Kimura, M. 1997. Anaerobic reoxidation of Mn2+ , Fe2+ , S- and S2- in submerged paddy soils. Biology and Fertility of Soils, 25, 302-306. Myers, B.M., Prendergast, F.G., Larusso, N.F. 1988. Experimental iron overload increases the pH of Hepatocyte Lysosomes. Hepatology, 8, 1240-1240. Nakanishi, H., Ogawa, I., Ishimaru, Y., Mori, S., Nishizawa, N.K. 2006. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Science and Plant Nutrition, 52, 464-469. Nelson, D.W., Sommers, L.E. 1986.Total carbon, organic carbon, and organic matter. In: Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, A.L. Page et al., Ed. Madison: American Society of Agronomy, pp. 961-1010, WI. Neubauer, S.C., Megonigal, J.P. 2007. Microbial oxidation and reduction of iron in the root zone and influences on metal mobility. John Wiley & Sons. Inc. New jersey, USA. Olson, R.V., Ellis, R. Jr. 1982. Methods of soil chemical analysis Part 2. Chemical and Mineralogical Properties, A.L. Page et al., Ed. Madison: American Society of Agronomy, pp. 301-312, WI. Otte, M.L., Rozema, J., Koster, L., Haarsma, M.S., Broekman, R.A. 1989. Iron plaque on roots of Aster-Tripolium L - interaction with zinc uptake. New Phytologist, 111, 309-317. Patrick, W.H., Jugsujinda, A. 1992. Sequential reduction and oxidation of inorganic nitrogen, manganese, and iron in flooded soil. Soil Science Society of America Journal, 56, 1071-1073. Ponnampe.Fn, Yuan, W.L., Nhung, M.T.M. 1965. Manganese dioxide as a remedy for a physiological disease of rice associated with reduction of soil. Nature, 207, 1103-1104. Ponnamperuma, F.N. 1972. The Chemistry of Submerged Soils. Advances in Agronom, 24, 29-96. Ratering, S., Conrad, R. 1998. Effects of short-term drainage and aeration on the production of methane in submerged rice soil. Global Change Biology, 4, 397-407. Ratering, S., Schnell, S. 2000. Localization of iron-reducing activity in paddy soil by profile studies. Biogeochemistry, 48, 341-365. Rhoades, J.D. 1993. Electrical-conductivity methods for measuring and mapping soil-salinity. Advances in Agronomy, 49, 201-251. Sarwar, N., Saifullah, Malhi, S.S., Zia, M.H., Naeem, A., Bibi, S., Farid, G. 2010. Role of mineral nutrition in minimizing cadmium accumulation by plants. Journal of the Science of Food and Agriculture, 90, 925-937. Sauve, S., Hendershot, W., Allen, H.E. 2000. Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environmental Science & Technology, 34, 1125-1131. Sebastian, A., Prasad, M.N.V. 2013. Cadmium minimization in rice. a review. Agronomy for Sustainable Development, 34, 155-173. Shao, G.S., Chen, M.X., Wang, D.Y., Xu, C.M., Mou, R.X., Cao, Z.Y., Zhang, X.F. 2008. Using iron fertilizer to control Cd accumulation in rice plants: A new promising technology. Science in China Series C-Life Sciences, 51, 245-253. So, H.B., Kirchhof, G. 2000. Management of clay soils for rainfed lowland rice-based cropping systems. Soil & Tillage Research, 56, 1-2. Soil Survey Staff. 2014. Keys to soil taxonomy, 12th ed. USDA-Natural Resources Conservation Service, Washington DC, USA. Tanji, K.K., Gao, S., Scardaci, S.C., Chow, A.T. 2003. Characterizing redox status of paddy soils with incorporated rice straw. Geoderma, 114, 333-353. Taylor, G.J., Crowder, A.A., Rodden, R. 1984. Formation and morphology of an iron plaque on the roots of Typha latifolia L. Grown in Solution Culture. American Journal of Botany, 71, 666-675. Traina S.J. 1999. The Environmental Chemistry of Cadmium, in: Cadmium in Soils and Plants, M. J. McLaughlin et al., Ed. Springer, pp.11-37, Netherlands, Dordrecht. Wang, M.Y., Chen, A.K., Wong, M.H., Qiu, R.L., Cheng, H., Ye, Z.H. 2011. Cadmium accumulation in and tolerance of rice (Oryza sativa L.) varieties with different rates of radial oxygen loss. Environmental Pollution, 159, 1730-1736. Wang, X., Yao, H., Wong, M., Ye, Z. 2013. Dynamic changes in radial oxygen loss and iron plaque formation and their effects on Cd and As accumulation in rice (Oryza sativa L.). Environmental Geochemistry and Health, 35, 779-788. Wiedemeier, T.H. 1999 Natural attenuation of fuels and chlorinated solvents in the subsurface. John Wiley & Sons. Inc. New York, USA. Yamaguchi, N., Nakamura, T., Dong, D., Takahashi, Y., Amachi, S., Makino, T. 2011. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Chemosphere, 83, 925-32. Yoshida, S., Forno, D., Cock, J., Gomez, K. 1976. Routine procedure for growing rice plants in culture solution. In: Laboratory Manual for Physiological Studies of Rice, pp.61-66, Los Banos, Phillipines.
|