|
[1] M. L. Cubeiro and J. L. G. Fierro, Selective Production of Hydrogen by Partial Oxidation of Methanol over ZnO-Supported Palladium Catalysts, Journal of Catalysis, 179 (1998) 150-162. [2] L. Mo, X. Zheng, C.T. Yeh, Selective production of hydrogen from partial oxidation of methanol over silver catalysts at low temperatures, Chemical Communications, (2004) 1426-1427. [3] J. Agrell, H. Birgersson, M. Boutonnet, I. Melián-Cabrera, R.M. Navarro, J.L.G. Fierro, Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3, Journal of Catalysis, 219 (2003) 389-403. [4] b. S. Velua, Ã and K. Suzukia, Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl oxide catalysts: effect of substitution of zirconium and cerium on the catalytic performance, Topics in Catalysis, 22 (2003) 235-244. [5] M. Turco, G. Bagnasco, C. Cammarano, P. Senese, U. Costantino, M. Sisani, Cu/ZnO/Al2O3 catalysts for oxidative steam reforming of methanol: The role of Cu and the dispersing oxide matrix, Applied Catalysis B: Environmental, 77 (2007) 46-57. [6] J. Agrell, H. Birgersson, M. Boutonnet, Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: a kinetic analysis and strategies for suppression of CO formation, Journal of Power Sources, 106 (2002) 249-257. [7] S. Velu, K. Suzuki, Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl oxide catalysts: effect of substitution of zirconium and cerium on the catalytic performance, Topics in Catalysis, 22 (2003) 235-244. [8] Space Applications of Hydrogen and Fuel Cells. [9] The Department of Energy hydrogen and fuel cells program plan: an integrated strategic plan for the research, development, and demonstration of hydrogen and fuel cell technologies, US Department of Energy, 2011. [10] A.D. James Larminie, Fuel Cell Systems Explained (Second Edition), 2003. [11] Fuel Cell Handbook(Seventh Edition), U.S. Department of Energy Office of Fossil Energy 2004. [12] B. Kakati, D. Deka, Effect of Resin Matrix Precursor on the Properties of Graphite Composite Bipolar Plate for PEM Fuel Cell, Energy & Fuels, 21 (2007) 1681-1687. [13] K. Müller, J. Völkl, W. Arlt, Thermodynamic Evaluation of Potential Organic Hydrogen Carriers, Energy Technology, 1 (2013) 20-24. [14] J.J. Verendel, P. Dinér, Efficient, Low Temperature Production of Hydrogen from Methanol, ChemCatChem, 5 (2013) 2795-2797. [15] P.T. T. N. Veziroglu, Hydrogen Energy Progress VIII, 1990. [16] H. Kahrom, Proceedings of Eurpean Fuel cell Forum Portable Fuel cell Conference, Lucerne, 1990. [17] B. Lindström, L.J. Pettersson, Hydrogen generation by steam reforming of methanol over copper-based catalysts for fuel cell applications, International Journal of Hydrogen Energy, 26 (2001) 923-933. [18] T. Takahashi, M. Inoue, T. Kai, Effect of metal composition on hydrogen selectivity in steam reforming of methanol over catalysts prepared from amorphous alloys, Applied Catalysis A: General, 218 (2001) 189-195. [19] G.M.D. T.S.R. Prasada Rao, Recent Advances in Basic and Applied Aspects of Industrial Catalysis, India, 1997. [20] L. Alejo, R. Lago, M.A. Peña, J.L.G. Fierro, Partial oxidation of methanol to produce hydrogen over CuZn-based catalysts, Applied Catalysis A: General, 162 (1997) 281-297. [21] C. Cao, K.L. Hohn, Study of reaction intermediates of methanol decomposition and catalytic partial oxidation on Pt/Al2O3, Applied Catalysis A: General, 354 (2009) 26-32. [22] S. Schuyten, E.E. Wolf, Selective Combinatorial Studies on Ce and Zr Promoted Cu/Zn/Pd Catalysts for Hydrogen Productio via Methanol Oxidative Reforming, Catalysis Letters, 106 (2006) 7-14. [23] Z. Wang, J. Xi, W. Wang, G. Lu, Selective production of hydrogen by partial oxidation of methanol over Cu/Cr catalysts, Journal of Molecular Catalysis A: Chemical, 191 (2003) 123-134. [24] S. Velu, K. Suzuki, T. Osaki, Selective production of hydrogen by partial oxidation of methanol over catalysts derived from CuZnAl-layered double hydroxides, Catalysis Letters, 62 (1999) 159-167. [25] B. Charles, Purpose in the Universe: A Search for Wholeness, Zygon, 1971. [26] G. Avgouropoulos, T. Ioannides, C. Papadopoulou, J. Batista, S. Hocevar, H.K. Matralis, A comparative study of Pt/γ-Al2O3, Au/α-Fe2O3 and CuO–CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen, Catalysis Today, 75 (2002) 157-167. [27] A.J. Dyakonov, Abatement of CO from relatively simple and complex mixtures I. Oxidation on Pd-Ag/zeolite catalysts, Applied Catalysis B: Environmental, 45 (2003) 241-255. [28] Y.F. Han, M. Kinne, R.J. Behm, Selective oxidation of CO on Ru/γ-Al2O3 in methanol reformate at low temperatures, Applied Catalysis B: Environmental, 52 (2004) 123-134. [29] T. Shishido, M. Yamamoto, D. Li, Y. Tian, H. Morioka, M. Honda, T. Sano, K. Takehira, Water-gas shift reaction over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation, Applied Catalysis A: General, 303 (2006) 62-71. [30] J.B. Wang, S.C. Lin, T.J. Huang, Selective CO oxidation in rich hydrogen over CuO/samaria-doped ceria, Applied Catalysis A: General, 232 (2002) 107-120. [31] D.J.M. Jeremy Patt, Cory Phillips and Levi Thompson Molybdenum carbide catalysts for water–gas shift, Catalysis Letters, 65 (2000) 193-195. [32] S. Liu, K. Takahashi, K. Uematsu, M. Ayabe, Hydrogen production by oxidative methanol reforming on Pd/ZnO catalyst: effects of the addition of a third metal component, Applied Catalysis A: General, 277 (2004) 265-270. [33] P.P. Colin Barnes, Quanmin Guo and Michael Bowker, Molecular-beam studies of methanol partial oxidation on Cu(110), Journal of the Chemical Society, Faraday Transactions, 86 (1990) 2693-2699. [34] J. Agrell, M. Boutonnet, I. Melián-Cabrera, J. Fierro, Production of hydrogen from methanol over binary Cu/ZnO catalysts Part I. Catalyst preparation and characterisation, Applied Catalysis A: General, 253 (2003) 201-211. [35] J. Agrell, M. Boutonnet, J. Fierro, Production of hydrogen from methanol over binary Cu/ZnO catalysts Part II. Catalytic activity and reaction pathways, Applied Catalysis A: General, 253 (2003) 213-223. [36] W.H. Cheng, Reaction and XRD studies on Cu based methanol decomposition catalysts: Role of constituents and development of high-activity multicomponent catalysts, Applied Catalysis A: General, 130 (1995) 13-30. [37] S. Liu, K. Takahashi, M. Ayabe, Hydrogen production by oxidative methanol reforming on Pd/ZnO catalyst: effects of Pd loading, Catalysis Today, 87 (2003) 247-253. [38] S. Liu, K. Takahashi, K. Fuchigami, K. Uematsu, Hydrogen production by oxidative methanol reforming on Pd/ZnO: Catalyst deactivation, Applied Catalysis A: General, 299 (2006) 58-65. [39] S. Liu, K. Takahashi, H. Eguchi, K. Uematsu, Hydrogen production by oxidative methanol reforming on Pd/ZnO: Catalyst preparation and supporting materials, Catalysis Today, 129 (2007) 287-292. [40] S. Schuyten, P. Dinka, A.S. Mukasyan, E. Wolf, A Novel Combustion Synthesis Preparation of CuO/ZnO/ZrO2/Pd for Oxidative Hydrogen Production from Methanol, Catalysis Letters, 121 (2008) 189-198. [41] T.J. Huang, H.M. Chen, Hydrogen production via steam reforming of methanol over Cu/(Ce,Gd)O2−x catalysts, International Journal of Hydrogen Energy, 35 (2010) 6218-6226. [42] B.L. Kniep, T. Ressler, A. Rabis, F. Girgsdies, M. Baenitz, F. Steglich, R. Schlögl, Rational Design of Nanostructured Copper–Zinc Oxide Catalysts for the Steam Reforming of Methanol, Angewandte Chemie International Edition, 43 (2003) 112-115. [43] T. Ressler, B.L. Kniep, I. Kasatkin, R. Schlögl, The Microstructure of Copper Zinc Oxide Catalysts: Bridging the Materials Gap, Angewandte Chemie International Edition, 44 (2005) 4704-4707. [44] W.H. Cheng, I.W. Chen, J.S. Liou, S.S. Lin, Supported Cu catalysts with yttria-doped ceria for steam reforming of methanol, Topics in Catalysis, 22 (2003) 225-233. [45] P. Clancy, J.P. Breen, J. Ross, The preparation and properties of coprecipitated Cu–Zr–Y and Cu–Zr–La catalysts used for the steam reforming of methanol, Catalysis Today, 127 (2007) 291-294. [46] H. Jeong, K. Kim, T. Kim, C. Ko, H. Park, I. Song, Hydrogen production by steam reforming of methanol in a micro-channel reactor coated with Cu/ZnO/ZrO2/Al2O3 catalyst, Journal of Power Sources, 159 (2006) 1296-1299. [47] G.S. Wu, D.S. Mao, G.Z. Lu, Y. Cao, K.N. Fan, The Role of the Promoters in Cu Based Catalysts for Methanol Steam Reforming, Catalysis Letters, 130 (2009) 177-184. [48] L. Yong-Feng, D. Xin-Fa, L. Wei-Ming, Effects of ZrO2-promoter on catalytic performance of CuZnAlO catalysts for production of hydrogen by steam reforming of methanol, International Journal of Hydrogen Energy, 29 (2004) 1617-1621. [49] G. Águila, J. Jiménez, S. Guerrero, F. Gracia, B. Chornik, S. Quinteros, P. Araya, A novel method for preparing high surface area copper zirconia catalysts Influence of the preparation variables, Applied Catalysis A: General, 360 (2009) 98-105. [50] J.P. Shen, C. Song, Influence of preparation method on performance of Cu/Zn-based catalysts for low-temperature steam reforming and oxidative steam reforming of methanol for H2 production for fuel cells, Catalysis Today, 77 (2002) 89-98. [51] T. Shishido, Y. Yamamoto, H. Morioka, K. Takaki, K. Takehira, Active Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation method in steam reforming of methanol, Applied Catalysis A: General, 263 (2004) 249-253. [52] N.M. Storozhok, M.G. Perevozkina, G.A. Nikiforov, I.F. Rusina, E.B. Burlakov, Correlation between the structure and inhibiting activity of phenosan derivatives, Kinetics and Catalysis, 45 (2004) 813-820. [53] C.Z. Yao, L.C. Wang, Y.M. Liu, G.S. Wu, Y. Cao, W.L. Dai, H.Y. He, K.N. Fan, Effect of preparation method on the hydrogen production from methanol steam reforming over binary Cu/ZrO2 catalysts, Applied Catalysis A: General, 297 (2006) 151-158. [54] S. Sa, H. Silva, L. Brandao, J.M. Sousa, A. Mendes, Catalysts for methanol steam reforming-A review, Appl Catal B-Environ, 99 (2010) 43-57. [55] Y. Liu, T. Hayakawa, K. Suzuki, S. Hamakawa, T. Tsunoda, T. Ishii, M. Kumagai, Highly active copper/ceria catalysts for steam reforming of methanol, Applied Catalysis A: General, 223 (2002) 137-145. [56] P.H. Matter, D.J. Braden, U.S. Ozkan, Steam reforming of methanol to H2 over nonreduced Zr-containing CuO/ZnO catalysts, Journal of Catalysis, 223 (2004) 340-351. [57] P.H. Matter, U.S. Ozkan, Effect of pretreatment conditions on Cu/Zn/Zr-based catalysts for the steam reforming of methanol to H2, Journal of Catalysis, 234 (2005) 463-475. [58] P.P.C. Udani, P.V.D.S. Gunawardana, H. Lee, D. Kim, Steam reforming and oxidative steam reforming of methanol over CuO–CeO2 catalysts, International Journal of Hydrogen Energy, 34 (2009) 7648-7655. [59] S.D. Jones, H.E. Hagelin-Weaver, Steam reforming of methanol over CeO2- and ZrO2-promoted Cu-ZnO catalysts supported on nanoparticle Al2O3, Applied Catalysis B: Environmental, 90 (2009) 195-204. [60] B. Lindström, L.J. Pettersson, G.P. Menon, Activity and characterization of Cu/Zn, Cu/Cr and Cu/Zr on γ-alumina for methanol reforming for fuel cell vehicles, Applied Catalysis A: General, 234 (2002) 111-125. [61] S. Patel, K.K. Pant, Activity and stability enhancement of copper–alumina catalysts using cerium and zinc promoters for the selective production of hydrogen via steam reforming of methanol, Journal of Power Sources, 159 (2006) 139-143. [62] S. Velu, K. Suzuki, M. Okazaki, M.P. Kapoor, T. Osaki, F. Ohashi, Oxidative Steam Reforming of Methanol over CuZnAl(Zr)-Oxide Catalysts for the Selective Production of Hydrogen for Fuel Cells: Catalyst Characterization and Performance Evaluation, Journal of Catalysis, 194 (2000) 373-384. [63] S. Velu, K. Suzuki, M.P. Kapoor, F. Ohashi, T. Osaki, Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts, Applied Catalysis A: General, 213 (2001) 47-63. [64] M. Turco, G. Bagnasco, U. Costantino, F. Marmottini, T. Montanari, G. Ramis, G. Busca, Production of hydrogen from oxidative steam reforming of methanol - I. Preparation and characterization of Cu/ZnO/Al2O3 catalysts from a hydrotalcite-like LDH precursor, Journal of Catalysis, 228 (2004) 43-55. [65] M. Turco, G. Bagnasco, U. Costantino, F. Marmottini, T. Montanari, G. Ramis, G. Busca, Production of hydrogen from oxidative steam reforming of methanol - II. Catalytic activity and reaction mechanism on Cu/ZnO/Al2O3 hydrotalcite-derived catalysts, Journal of Catalysis, 228 (2004) 56-65. [66] T. Shishido, Y. Yamamoto, H. Morioka, K. Takehira, Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation: Steam reforming and oxidative steam reforming, Journal of Molecular Catalysis A: Chemical, 268 (2007) 185-194. [67] T. Shishido, Y. Yamamoto, H. Morioka, K. Takehira, Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation: Steam reforming and oxidative steam reforming, J Mol Catal a-Chem, 268 (2007) 185-194. [68] T. Shishido, Y. Yamamoto, H. Morioka, K. Takaki, K. Takehira, Active Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation method in steam reforming of methanol, Appl Catal a-Gen, 263 (2004) 249-253. [69] A. Mastalir, B. Frank, A. Szizybalski, H. Soerijanto, A. Deshpande, M. Niederberger, R. Schomäcker, R. Schlögl, T. Ressler, Steam reforming of methanol over Cu/ZrO2/CeO2 catalysts: a kinetic study, Journal of Catalysis, 230 (2005) 464-475. [70] S. Patel, K.K. Pant, Influence of preparation method on performance of Cu(Zn)(Zr)-alumina catalysts for the hydrogen production via steam reforming of methanol, Journal of Porous Materials, 13 (2006) 373-378. [71] M. Haruta, Size- and support-dependency in the catalysis of gold, Catal Today, 36 (1997) 153-166. [72] M. Haruta, M. Date, Advances in the catalysis of Au nanoparticles, Appl Catal a-Gen, 222 (2001) 427-437. [73] Z. Xiao, A.R. Laplante, Characterizing and recovering the platinum group minerals - a review, Miner Eng, 17 (2004) 961-979. [74] Y. Usami, K. Kagawa, M. Kawazoe, Y. Matsumura, H. Sakurai, M. Haruta, Catalytic methanol decomposition at low temperatures over palladium supported on metal oxides, Appl Catal a-Gen, 171 (1998) 123-130. [75] M.P. Kapoor, Y. Ichihashi, K. Kuraoka, Y. Matsumura, Catalytic methanol decomposition over palladium deposited on thermally stable mesoporous titanium oxide, J Mol Catal a-Chem, 198 (2003) 303-308. [76] M.P. Kapoor, Y. Ichihashi, K. Kuraoka, W.J. Shen, Y. Matsumura, Catalytic methanol decomposition over palladium deposited on mesoporous cerium oxide, Catalysis Letters, 88 (2003) 83-87. [77] M. Lenarda, E. Moretti, L. Storaro, P. Patrono, F. Pinzari, E. Rodriguez-Castellon, A. Jimenez-Lopez, G. Busca, E. Finocchio, T. Montanari, R. Frattini, Finely dispersed Pd-Zn catalyst supported on an organized mesoporous alumina for hydrogen production by methanol steam reforming, Appl Catal a-Gen, 312 (2006) 220-228. [78] M.L. Cubeiro, J.L.G. Fierro, Partial oxidation of methanol over supported palladium catalysts, Appl Catal a-Gen, 168 (1998) 307-322. [79] M.L. Cubeiro, J.L.G. Fierro, Selective production of hydrogen by partial oxidation of methanol over ZnO-Supported palladium catalysts, Journal of Catalysis, 179 (1998) 150-162. [80] N. Iwasa, N. Takezawa, New supported Pd and Pt alloy catalysts for steam reforming and dehydrogenation of methanol, Topics in Catalysis, 22 (2003) 215-224. [81] P. Bichon, M. Asheim, A. Jordal, T. Sperle, M. Fathi, A. Holmen, E.A. Blekkan, Hydrogen from methanol steam-reforming over Cu-based catalysts with and without Pd promotion, International Journal of Hydrogen Energy, 32 (2007) 1799-1805. [82] S. Schuyten, S. Guerrero, J.T. Miller, T. Shibata, Characterization and oxidation states of Cu and Pd in Pd–CuO/ZnO/ZrO2 catalysts for hydrogen production by methanol partial oxidation, Applied Catalysis A, (2009). [83] J. Papavasiliou, G. Avgouropoulos, T. Ioannides, Production of hydrogen via combined steam reforming of methanol over CuO–CeO2 catalysts, Catalysis Communications, 5 (2004) 231-235. [84] M.F. Luo, J. Chen, L.S. Chen, J.Q. Lu, Z. Feng, C. Li, Structure and redox properties of CexTi1-xO2 solid solution, Chemistry of Materials, 13 (2001) 197-202. [85] H.S. Roh, K.W. Jun, W.S. Dong, S.E. Park, Y.S. Baek, Highly stable Ni catalyst supported on Ce-ZrO2 for oxy-steam reforming of methane, Catalysis Letters, 74 (2001) 31-36. [86] E. Moretti, M. Lenarda, L. Storaro, A. Talon, T. Montanari, G. Busca, E. Rodríguez-Castellón, A. Jiménez-López, M. Turco, G. Bagnasco, R. Frattini, One-step synthesis of a structurally organized mesoporous CuO-CeO2-Al2O3 system for the preferential CO oxidation, Applied Catalysis A: General, 335 (2008) 46-55. [87] S.Y. Huang, National Tsing Hua University,Hsinchu, Taiwan, ROC, (2006). [88] G. Fierro, M. LoJacono, M. Inversi, P. Porta, F. Cioci, R. Lavecchia, Study of the reducibility of copper in CuO-ZnO catalysts by temperature-programmed reduction, Appl Catal a-Gen, 137 (1996) 327-348. [89] Y.J. Huang, K.L. Ng, H.-Y. Huang, The effect of gold on the copper-zinc oxides catalyst during the partial oxidation of methanol reaction, International Journal of Hydrogen Energy, 36 (2011) 15203-15211. [90] M.P. Francisco, V.R. Mastelaro, P.A.P. Nascente, A.O. Florentino, Activity and Characterization by XPS, HR-TEM, Raman Spectroscopy, and BET Surface Area of CuO/CeO2-TiO2Catalysts, The Journal of Physical Chemistry B, 105 (2001) 10515-10522. [91] D. Zhang, H. Yin, R. Zhang, J. Xue, T. Jiang, Gas Phase Hydrogenation of Maleic Anhydride to γ-Butyrolactone by Cu–Zn–Ce Catalyst in the Presence of n-Butanol, Catalysis Letters, 122 (2008) 176-182. [92] W. Shan, Z. Feng, Z. Li, J. Zhang, W. Shen, C. Li, Oxidative steam reforming of methanol on Ce0.9Cu0.1OY catalysts prepared by deposition–precipitation, coprecipitation, and complexation–combustion methods, Journal of Catalysis, 228 (2004) 206-217. [93] J.B. Wang, C.H. Li, T.J. Huang, Study of Partial Oxidative Steam Reforming of Methanol over Cu–ZnO/samaria-doped Ceria Catalyst, Catalysis Letters, 103 (2005) 239-247. [94] S. Patel, K.K. Pant, Selective production of hydrogen via oxidative steam reforming of methanol using Cu–Zn–Ce–Al oxide catalysts, Chemical Engineering Science, 62 (2007) 5436-5443. [95] C.C. Chang, C.C. Hsu, C.T. Chang, Y.P. Chen, B.J. Liaw, Y.Z. Chen, Effect of noble metal on oxidative steam reforming of methanol over CuO/ZnO/Al2O3 catalysts, International Journal of Hydrogen Energy, 37 (2012) 11176-11184. [96] W. Liu, M. Flytzani-Stephanopoulos, Total Oxidation of Carbon-Monoxide and Methane over Transition Metal-Fluorite Oxide Composite Catalysts .2. Catalyst Characterization and Reaction-Kinetics, Journal of Catalysis, 153 (1995) 317-332. [97] G.J.J. Bartley, R. Burch, Support and Morphological Effects in the Synthesis of Methanol over Cu/Zno, Cu/Zro2 and Cu/Sio2 Catalysts, Appl Catal, 43 (1988) 141-153. [98] H. Zhu, P. Zhang, S. Dai, Recent Advances of Lanthanum-Based Perovskite Oxides for Catalysis, ACS Catalysis, 5 (2015) 6370-6385. [99] C.W.C. Jr, J.L. Falconer, Spillover in heterogeneous catalysis, Chemical reviews, (1995). [100] L. Kuan-Yi, H. Yuh-Jeen, Low CO generation on tunable oxygen vacancies of non-precious metallic Cu/ZnO catalysts for partial oxidation of methanol reaction, Applied Catalysis B: Environmental, 150-151 (2014) 506514. [101] Y. Usami, K. Kagawa, M. Kawazoe, Y. Matsumura, H. Sakurai, M. Haruta, Catalytic methanol decomposition at low temperatures over palladium supported on metal oxides, Applied Catalysis A: General, 171 (1998) 123-130. [102] M.P. Kapoor, Y. Ichihashi, K. Kuraoka, Y. Matsumura, Catalytic methanol decomposition over palladium deposited on thermally stable mesoporous titanium oxide, Journal of Molecular Catalysis A: Chemical, 198 (2003) 303-308. [103] M. Lenarda, E. Moretti, L. Storaro, P. Patrono, F. Pinzari, E. Rodríguez-Castellón, A. Jiménez-López, G. Busca, E. Finocchio, T. Montanari, R. Frattini, Finely dispersed Pd-Zn catalyst supported on an organized mesoporous alumina for hydrogen production by methanol steam reforming, Applied Catalysis A: General, 312 (2006) 220-228. [104] M.L. Cubeiro, J.L.G. Fierro, Partial oxidation of methanol over supported palladium catalysts, Applied Catalysis A: General, 168 (1998) 307-322. [105] C.C. Chang, C.T. Chang, S.J. Chiang, B.J. Liaw, Y.-Z. Chen, Oxidative steam reforming of methanol over CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts, International Journal of Hydrogen Energy, 35 (2010) 7675-7683. [106] Y.-H. Chin, R. Dagle, J. Hu, A.C. Dohnalkova, Y. Wang, Steam reforming of methanol over highly active Pd/ZnO catalyst, Catalysis Today, 77 (2002) 79-88. [107] N. Iwasa, S. Masuda, N. Ogawa, N. Takezawa, Steam reforming of methanol over Pd/ZnO: Effect of the formation of PdZn alloys upon the reaction, Applied Catalysis A: General, 125 (1995) 145-157. [108] N. Iwasa, T. Mayanagi, N. Ogawa, K. Sakata, N. Takezawa, New catalytic functions of Pd-Zn, Pd-Ga, Pd-In, Pt-Zn, Pt-Ga and Pt-In alloys in the conversions of methanol, Catalysis Letters, 54 (1998) 119-123. [109] Y. Wang, J. Zhang, X.U. Hengyong, X. Bai, Reduction of Pd/ZnO Catalyst and Its Catalytic Activity for Steam Reforming of Methanol, Chinese Journal of Catalysis, 28 (2007) 234-238. [110] A. Wolf, F. Schuth, A systematic study of the synthesis conditions for the preparation of highly active gold catalysts, Appl Catal a-Gen, 226 (2002) 1-13. [111] W. Liu, M. Flytzani-Stephanopoulos, Total Oxidation of Carbon-Monoxide and Methane over Transition Metal-Fluorite Oxide Composite Catalysts .1. Catalyst Composition and Activity, Journal of Catalysis, 153 (1995) 304-316. [112] C. Bozo, N. Guilhaume, J.M. Herrmann, Role of the ceria-zirconia support in the reactivity of platinum and palladium catalysts for methane total oxidation under lean conditions, Journal of Catalysis, 203 (2001) 393-406. [113] Z.Y. Pu, X.S. Liu, A.P. Jia, Y.L. Xie, J.Q. Lu, M.F. Luo, Enhanced activity for CO oxidation over Pr- and Cu-doped CeO(2) catalysts: Effect of oxygen vacancies, J Phys Chem C, 112 (2008) 15045-15051. [114] K.Y. Lee, Y.J. Huang, Low CO generation on tunable oxygen vacancies of non-precious metallic Cu/ZnO catalysts for partial oxidation of methanol reaction, Applied Catalysis B: Environmental, 150 (2014) 506-514. [115] A. Hornés, P. Bera, A. Cámara, D. Gamarra, G. Munuera, A. Martínez-Arias, CO-TPR-DRIFTS-MS in situ study of CuO/Ce1−xTbxO2−y (x=0, 0.2 and 0.5) catalysts: Support effects on redox properties and CO oxidation catalysis, Journal of Catalysis, 268 (2009) 367-375. [116] Y.M. Choi, H. Abernathy, H.T. Chen, M.C. Lin , M. Liu, Characterization of O2–CeO2 Interactions Using In Situ Raman Spectroscopy and First‐Principle Calculations, ChemPhysChem, 7 (2006) 1957-1963. [117] J. Li, G. Lu, G. Wu, D. Mao, Y. Wang, Y. Guo, Promotional role of ceria on cobaltosic oxide catalyst for low-temperature CO oxidation, Catalysis Science & Technology, 2 (2012) 1865-1871. [118] H. Zhu, Z. Qin, W. Shan, W. Shen, J. Wang, Pd/CeO2–TiO2 catalyst for CO oxidation at low temperature: a TPR study with H2 and CO as reducing agents, Journal of Catalysis, 225 (2004) 267-277. [119] J.A. van Bokhoven, C. Louis, J.T. Miller, M. Tromp, O.V. Safonova, P. Glatzel, Activation of oxygen on gold/alumina catalysts: in situ high-energy-resolution fluorescence and time-resolved X-ray spectroscopy, Angew Chem Int Ed Engl, 45 (2006) 4651-4654.
|