|
1.Li B, Xia Q, Lu C, Zhou Z, Xiang Z: Analysis on frequency and density of microsatellites in coding sequences of several eukaryotic genomes. Genomics Proteomics Bioinformatics 2004, 2(1):24-31. 2.Morgante M, Hanafey M, Powell W: Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nature Genetics 2002, 30(2):194-200. 3.McCouch SR, Chen X, Panaud O, Temnykh S, Xu Y, Cho YG, Huang N, Ishii T, Blair M: Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Molecular Biology 1997, 35(1):89-99. 4.Zane L, Bargelloni L, Patarnello T: Strategies for microsatellite isolation: a review. Molecular ecology 2002, 11(1):1-16. 5.Abdelkrim J, Robertson BC, Stanton JAL, Gemmell NJ: Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing. BioTechniques 2009, 46(3):185-192. 6.Zalapa JE, Cuevas H, Zhu H, Steffan S, Senalik D, Zeldin E, McCown B, Harbut R, Simon P: Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. American Journal of Botany 2012, 99(2):193-208. 7.Kircher M, Kelso J: High throughput DNA sequencing-concepts and limitations. BioEssays 2010, 32(6):524-536. 8.Shendure J, Ji H: Next-generation DNA sequencing. Nat Biotechnol 2008, 26(10):1135-1145. 9.Metzker ML: Sequencing technologies-the next generation. Nature Reviews Genetics 2009, 11(1):31-46. 10.Mardis ER: The impact of next-generation sequencing technology on genetics. Trends in Genetics 2008, 24(3):133-141. 11.Rasmussen D, Noor M: What can you do with 0.1× genome coverage? A case study based on a genome survey of the scuttle fly Megaselia scalaris (Phoridae). Bmc Genomics 2009, 10(1):382. 12.Wicker T, Narechania A, Sabot F, Stein J, Vu G, Graner A, Ware D, Stein N: Low-pass shotgun sequencing of the barley genome facilitates rapid identification of genes, conserved non-coding sequences and novel repeats. Bmc Genomics 2008, 9(1):518. 13.Waring M, Britten RJ: Nucleotide sequence repetition: a rapidly reassociating fraction of mouse DNA. Science 1966, 154(3750):791. 14.Lysholm F, Andersson B, Persson B: An efficient simulator of 454 data using configurable statistical models. BMC research notes 2011, 4(1):449. 15.Benson G: Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research 1999, 27(2):573. 16.Peterson DG, Wessler SR, Paterson AH: Efficient capture of unique sequences from eukaryotic genomes. Trends in Genetics 2002, 18(11):547-550. 17.Britten RJ, Graham DE, Neufeld BR: Analysis of repeating DNA sequences by reassociation. Methods in enzymology 1974, 29:363-418. 18.Britten R, Ko D: Repeated Sequences in DA''. 1968. 19.Peterson DG, Pearson WR, Stack SM: Characterization of the tomato (Lycopersicon esculentum) genome using in vitro and in situ DNA reassociation. Genome 1998, 41(3):346-356. 20.Pearson W, Davidson E, Britten R: A program for least squares analysis of reassociation and hybridization data. Nucleic Acids Research 1977, 4(6):1727. 21.Paterson AH: Leafing through the genomes of our major crop plants: strategies for capturing unique information. Nature Reviews Genetics 2006, 7(3):174-184. 22.Gupta VS, Gadre S, Ranjekar P: Novel DNA sequence organization in rice genome* 1. Biochimica et Biophysica Acta (BBA)-Nucleic Acids and Protein Synthesis 1981, 656(2):147-154. 23.Smit A, Hubley R, Green P: RepeatMasker Open-3.0. 2004. 24.Mdust [http://compbio.dfci.harvard.edu/tgi/software/]. 25.Price AL, Jones NC, Pevzner PA: De novo identification of repeat families in large genomes. Bioinformatics 2005, 21(suppl 1):i351-i358. 26.McGinnis S, Madden TL: BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Research 2004, 32(suppl 2):W20-W25. 27.Goldberg RB: DNA sequence organization in the soybean plant. Biochemical genetics 1978, 16(1):45-68.
|