跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/06 07:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:侯品全
論文名稱:利用VIGS靜默多元胺合成酶基因來探討多元胺對煙草(Nicotiana benthamiana) 生長發育的影響
論文名稱(外文):Investigation of the roles of polyamine biosynthetic enzymes in growth and developmental programs in Nicotiana benthamiana by virus-induced gene silencing
指導教授:林忠毅林忠毅引用關係
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:生物學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:78
中文關鍵詞:病毒誘導基因靜默多元胺圓葉菸草
相關次數:
  • 被引用被引用:2
  • 點閱點閱:349
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究中選用茄科植物圓葉煙草 (Nicotiana benthamiana) 為材料,利用VIGS (virus induced gene silencing) 技術靜默多元胺合成酶基因,觀察不同多元胺合成酶基因被靜默後,對植物生長發育的影響。此外實驗中也使用綠螢光蛋白標記三胺合成酶基因,觀察目標基因作用位置並推導其機制。
在煙草中目標基因靜默後,本研究藉由RT-PCR觀察各煙草多元胺合成酶基因的表現量。從實驗結果得知,將二胺合成酶分別為ADC (arginine decarboxylase)、ODC (ornithine decarboxylase) 及三胺合成酶SPDS (spermidine synthase)靜默後,均獲得該基因之表現量確實明顯下降。SPDS基因靜默圓葉煙草,植物有矮化的症狀,此外明顯的有花期延後的現象,花柱的發育亦受到影響,成熟果莢數目明顯減少,ADC及ODC基因的靜默圓葉煙草則無明顯差異。藉由RT-PCR分析多元胺基因在圓葉煙草不同組織之表現量,結果發現NbADC基因在圓葉煙草年輕葉、花、根、頂芽的組織有較高之表現量,而NbODC、NbSPDS兩個基因在花、頂芽組織有較高的表現量,以HPLC分析靜默後多元胺表現量的結果也與基因的表現量的結果一致。實驗中並使用綠螢光蛋白標記三胺合成酶基因,認為三胺合成酶可能分佈於細胞膜上。經由上述研究結果,發現Spd參與繁殖器官生長發育之調控較為顯著。

Polyamines are implicated in a wide array of fundamental processes in plants such as adaptation and tolerance to environmental stresses. However, their roles in plant growth and developmental programs have not been fully elucidated. In this study, Nicotiana benthamiana was used as a model plants to investigate the roles of polyamine biosynthesis in developmental programs. Genes encoding polyamine biosynthesis enzymes were knocking down by using the VIGS (virus-induced gene silencing) strategies. Analysis of plant growth and development programs was carried out in these gene-silencing plants. Subcellular localization of the polyamine biosynthesis enzyme labeled with green fluorescent protein was performed to observe the localization and deduce the mechanism of action.
The effects of VIGS on gene expression level were validated by RT-PCR. When compared with the vector-control lines, the expression of genes encoding diamine synthase ADC (arginine decarboxylase), ODC (ornithine decarboxylase) and synthase triamine SPDS (spermidine) was significantly decreased. In NbSPDS-silenced plants, the growth and developmental programs were impaired such as dwarfing, delayed flowering, abnormal style development and reduced the number of fruit capsules. The NbADC- and NbODC-silenced plants exhibited normal morphology. By RT-PCR analysis of polyamine gene expression in different tissues, it was found that NbADC gene was expressed in young leaves, flowers, roots and shoot apex. The expression of NbODC and NbSPDS genes were relatively higher in flower and shoot apex. HPLC analysis of polyamine content showed that the content of spermidine was decreased in the NbSPDS-silenced plants when compared with the vector-control plants. In summary, this study suggests that spermidine plays an important role in the regulation of growth and developmental programs in plants.

目錄
中文摘要 2
英文摘要Abstract 4
致謝 6
縮寫表 9
1. 前言 10
1-1. 植物中多元胺之代謝生理 10
1-2. 多元胺對植物生長發育的影響 13
1-3. 逆境下多元胺對生理表現的影響 18
1-4. 利用病毒誘導基因靜默進行多元胺靜默對植物生長發育的影響 20
1-5. 研究目的 24
2. 材料方法 26
2-1. 植物的生長條件與處理 (growth and treat conditions) 26
2-2. VIGS (virus-induced gene silencing) 前置作業 27
2-3. 病毒誘導基因靜默的進行 37
2-4. 三胺合成酶融合綠螢光蛋白 (SPDS-GFP) 構築與細胞表現位置觀察 38
2-5. 萃取多元胺及分析其含量 40
3. 結果 42
3-1. 利用VIGS技術對多元胺合成酶基因靜默的效應 42
3-2. 多元胺合成酶基因靜默後對植物生長發育的影響 49
3-3. 多元胺合成酶基因表現的組織特異性 54
4. 討論 59
4-1. 利用VIGS技術對多元胺合成酶基因靜默的效應 59
4-2. 多元胺合成酶基因靜默後對植物生長發育的影響 64
4-3. 多元胺合成酶基因表現的組織特異性 67
5. 結論 70
6. 參考文獻 72
7. 附錄 78
7-1. 多元胺生合成路徑 (Takahashi T. and Kakehi J., 2010) 78


林忠毅。 (2004)。 添加多元胺 putrescine 對離體培養玉米子粒發育的影響。中華農學會報。
許哲溢。(2004)。鹽分逆境下多元胺對菩提藻葉狀體的紅藻澱粉降解酵素性之影響。國立彰化師範大學生物學系研究所碩士論文。
徐郁雯。(2006)。鹽分逆境對不同耐性水稻懸浮標多元胺生合成基因表現之影響。國立彰化師範大學生物學系研究所碩士論文。
陳逸凡。(2004)。鹽分逆境下適應性水稻懸浮細胞多元胺與脯胺酸含量變化及其代謝途徑相關性。國立彰化師範大學生物學系研究所碩士論文。
楊勝仲、黃耿祥、陳泓毅及林裕城。(2010)。微型胞膜電穿孔基因轉殖晶片最佳化之研究。成大研發快訊,1-4。
Agudelo-Romero P, Bortolloti C, Pais MS, Tiburcio AF, Fortes AM. (2013). Study of polyamines during grape ripening indicate an important role of polyamine catabolism. Plant Physiology and Biochemistry, 105-119.
A Bouchereau, A Aziz, F Larher, J Martin-Tanguy (1999). Polyamines and environmental challenges: recent development. Plant Science, 103–125.
Basu, R.; Ghosh, B., (1991). Polyamine in variouse rice (Oryza saiva L.) genotypes with respect to sodium chloride salinity. Physiologia Plantarum, 575-581.
Becker A, Lange M. (2010). VIGS – genomics goes functional. Trends in Plant Science, 1-4.
Belda-Palazón B, Ruiz L, Martí E, Tárraga S and Tiburcio AF. (2012) . Aminopropyltransferases involved in polyamine biosynthesis localize preferentially in the nucleus of plant cells. Plos One, 1-10.
Bunsupa S, Katayama K, Ikeura E, Oikawa A, Toyooka K, Saito K, , and Yamazaki M. (2012). Lysine decarboxylase catalyzes the first step of quinolizidine alkaloid biosynthesis and coevolved with alkaloid production in leguminosae. The Plant Cell, 1202-1216.
Cona A, Rea G, Angelini R, Federico R, Tavladoraki P. (2006) . Functions of amine oxidases in plant development and defence. Trends in Plant Science, 80-88.
Cakir, C., Gillespie, M.E., and Scofield, S.R. (2010). Rapid determination of gene function by virus-induced gene silencing in wheat and barley. Crop Scienc, S77-S84.
Cvikrová M, Gemperlová L, Dobrá J, Martincová O, Prásil IT, Gubis J, Vanková R. (2012). Effect of heat stress on polyamine metabolism in proline-over-producing tobacco plants. Plant Science, 49-58.
Deeb, F., van der Weele, C.M., and Wolniak, S.M. (2010). Spermidine is a morphogenetic determinant for cell fate specification in the male gametophyte of the water fern Marsilea vestita. The Plant Cell, 3678-3691.
Delis, C., Dimou, M., Efrose, R.C., Flemetakis, E., Aivalakis, G., and Katinakis, P. (2005). Ornithine decarboxylase and arginine decarboxylase gene transcripts are co-localized in developing tissues of Glycine max etiolated seedlings. Plant Physiology and Biochemistry, 19-25.
Dutra, N.T., Silveira, V., de Azevedo, I.G., Gomes-Neto, L.R., Facanha, A.R., Steiner, N., Guerra, M.P., Floh, E.I., and Santa-Catarina, C. (2012). Polyamines affect the cellular growth and structure of pro-embryogenic masses in Araucaria angustifolia embryogenic cultures through the modulation of proton pump activities and endogenous levels of polyamines. Physiologia Plantarum, 121-132.
Falasca G, Franceschetti M, Bagni N, Altamura MM, Biasi R. (2010). Polyamine biosynthesis and control of the development of functional pollen in kiwifruit. Plant Physiology and Biochemistry, 565-573.
Gomez-Jimenez MC, Paredes MA, Gallardo M, Fernandez-Garcia N, Olmos E, Sanchez-Calle IM. (2010a). Tissue-specific expression of olive S-adenosyl methionine decarboxylase and spermidine synthase genes and polyamine metabolism during flower opening and early fruit development. Planta Medica, 629-647.
Gomez-Jimenez MC, Paredes MA, Gallardo M, Sanchez-Calle IM. (2010b). Mature fruit abscission is associated with up-regulation of polyamine metabolism in the olive abscission zone. Journal of Plant Physiology, 1432-1441.
Greenway, H., and Munns, R (1980a). Mechanisms of salt tolerance in nonhalophytes. Plant Physiology and Biochemistry, 149-190.
Hua-Jun Gao, Hong-Qiang Yang, Jia-Xi Wang (2009). Arginine metabolism in roots and leaves of apple (Malus domestica Borkh.): The tissue-specific formation of both nitric oxide and polyamines. Scientia Horticulturae, 174-152.
He L, Ban Y, Inoue H, Matsuda N, Liu J and Moriguchi T. (2008). Enhancement of spermidine content and antioxidant capacity in transgenic pear shoots overexpressing apple spermidine synthase in response to salinity and hyperosmosis. Phytochemistry, 2133–2141.
Imai A, Matsuyama T, Hanzawa Y, Akiyama T, Tamaoki M, Saji H, Shirano Y, Kato T, Hayashi H, Shibata D, Tabata S, Komeda Y, Takahashi T. (2004). Spermidine synthase genes are essential for survival of arabidopsis. Plant Physiology and Biochemistry, 1565-1573.
Imai A, Hanzawa Y, Komura M, Yamamoto KT, Komeda Y, and Takahashi T. (2006). The dwarf phenotype of the Arabidopsis acl5 mutant is suppressed by a mutation in an upstream ORF of a bHLH gene. Development, 3575-3585.
Imai A, Hanzawa Y, Komura M, Yamamoto KT, Komeda Y, Takahashi T. (2006). Functions of amine oxidases in plant development and defence. Trends in Plant Science, 80-88.
Konstantinos A. Paschalidis and Kalliopi A. Roubelakis-Angelakis (2005a). Spatial and temporal distribution of polyamine levels and polyamine anabolism in different organs/tissues of the tobacco plant, correlations with age, cell division/expansion, and differentiation. Plant Physiology, 142-152.
Konstantinos A. Paschalidis and Kalliopi A. (2005b). Sites and regulation of polyamine catabolism in the tobacco plant, correlations with cell division/expansion, cell cycle progression, and vascular development1. Plant Physiology, 2174-2184.
Liu JH, Nada K, Honda C, Kitashiba H, Wen XP, Pang XM and Moriguchi T. (2006) Polyamine biosynthesis of apple callus under salt stress: importance of the arginine decarboxylase pathway in stress response. Journal of Experimental Botany, 2589-2599.
Meloni, D.A. (2001). Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress. Journal of Plant Nutrition, 599-612.
Naka, Y., Watanabe, K., Sagor, G.H., Niitsu, M., Pillai, M.A., Kusano, T., and Takahashi, Y. (2010). Quantitative analysis of plant polyamines including thermospermine during growth and salinity stress. Plant Physiology and Biochemistry, 527-533.
Nambeesan, S., Datsenka, T., Ferruzzi, M.G., Malladi, A., Mattoo, A.K., and Handa, A.K. (2010). Overexpression of yeast spermidine synthase impacts ripening, senescence and decay symptoms in tomato. The Plant Journal, 836-847.
Pablo de Dios, Angel Jesús Matilla, Mercedes Gallardoa (2006). Flower fertilization and fruit development prompt changes in free polyamines and ethylene in damson plum (Prunus insititia L.). Journal of Plant Physiology, 86-97.
Patel, C.N., Wortham, B.W., Lines, J.L., Fetherston, J.D., Perry, R.D., and Oliveira, M.A. (2006). Polyamines are essential for the formation of plague biofilm. Journal of Bacteriology 188, 2355-2363.
Reggiani R, Hochkoeppler A, Bertani A. (1989). Polyamines in Rice Seedlings under Oxygen-Deficit Stress. Plant Physiology, 1197-1201.
Rodrı´guez-Kessler, M. Angel G. Alpuche-Solís, Oscar A. Ruiz, Juan F. Jiménez-Bremont (2006). Effect of salt stress on the regulation of maize (zea mays L.) genes involved in polyamine biosynthesis. Plant Growth Regulation, 175-185.
Sairam, R. K. and Aruna Tyagi (2004). Physiology and molecular biology of salinity stress tolerance in plants. Current Science, 407-421.
Santa-Cruz, A. Manuel Acosta, Francisco Pérez-Alfocea, Maria C. Bolarin (1997). Changes in free polyamie levels induced by salt stress in leaves of cultivated and wild tomato species. Physiologia Plantarum, 341-346.
Senthil-Kumar, M., and Mysore, K.S. (2011). Virus-induced gene silencing can persist for more than 2 years and also be transmitted to progeny seedlings in Nicotiana benthamiana and tomato. Plant Biotechnology Journal , 797-806.
Tassoni, A., Franceschetti, M., and Bagni, N. (2008). Polyamines and salt stress response and tolerance in Arabidopsis thaliana flowers. Plant Physiology and Biochemistry, 607-613.
Takahashi T. and Kakehi J. (2010). Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Annals of Botany, 1-6.
Wang, J., Sun, P.P., Chen, C.L., Wang, Y., Fu, X.Z., and Liu, J.H. (2011). An arginine decarboxylase gene PtADC from Poncirus trifoliata confers abiotic stress tolerance and promotes primary root growth in Arabidopsis. Journal of Experimental Botany , 2899-2914.
Waterhouse PM, and Helliwell CA. (2003). Exploring plant genomes by RNA-induced gene silencing. Nature Reviews Genetics, 29-38.
Wu XB, Wang J, Liu JH, Deng XX. (2009). Involvement of polyamine biosynthesis in somatic embryo genesis of valencia sweet orange (Citrus sinensis) in duced by glycerol. Journal of Plant Physiology, 52-62.
Zhang L, Li Y, Lu W, Meng F, Wu CA and Guo X. (2012). Cotton GhMKK5 affects disease resistance, induces HR-like cell death, and reduces the tolerance to salt and drought stress in transgenic Nicotiana benthamiana. Journal of Experimental Botany, 3935-3951.
Z.F. An, C.Y. Li, L.X. Zhang, A.K. Alva (2012). Role of polyamines and phospholipase D in maize (Zea mays L.) response to drought stress. South African Journal of Botany, 145-150.
Zhu, J.K. (2001). Genetic analysis of plant salt tolerance using Arbidopsis thaliana . Plant Physiology, 941-948.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊