跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.188) 您好!臺灣時間:2025/10/07 13:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王儷勳
研究生(外文):Li-Hsun Wang
論文名稱:奈米脫層蒙脫石片在防曬乳液上的應用
論文名稱(外文):Applications of Exfoliated Montmorillonite on Sunscreen Formulations
指導教授:林金福林金福引用關係
指導教授(外文):King-Fu Lin
口試委員:邱文英李佳芬
口試日期:2011-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:171
中文關鍵詞:蒙脫石二氧化鈦豬皮對氨基苯甲酸防曬
外文關鍵詞:montmorillonitetitanium dioxidepigskinpara-aminobenoic acidsunscreen
相關次數:
  • 被引用被引用:0
  • 點閱點閱:447
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
防曬乳液中的成分同時包含物理性防曬劑和化學性防曬劑,化學吸收劑para-aminobenzoic acid(PABA)光反應過程會產生不穩定的中間產物,而二氧化鈦和氧化鋅為好的光觸媒,會加速PABA光降解反應,減少PABA之光穩定性。因此藉由脫層蒙脫石的特殊結構以及對PABA的吸附性,改善防曬乳液對皮膚可能的傷害。
本研究利用UV/vis觀察到二氧化鈦、氧化鋅在紫外光區會使PABA之光吸收度上升,脫層蒙脫石(exMMT)則使PABA的304nm的光吸收度下降,而這四種成分皆會加速PABA的光裂解,並以二氧化鈦有較好的催化能力。以PL分析脫層蒙脫石(exMMT)、不同表面性質之二氧化鈦(TTO、TiO2 Rod)和氧化鋅(ZnO)與PABA相互作用後之發光光譜,結果顯示exMMT、TTO和TiO2 Rod使PABA之347nm發光強度提升,除此之外,PABA被TTO和TiO2 Rod吸附後,使PL光譜有紅位移現象,而ZnO能被PABA放射光347nm激發而產生另一個386nm發光波峰。當提高防曬乳液成分之濃度,PL圖譜中之發光強度有整體降低的趨勢。
將製備之防曬乳液塗抹於豬皮上,以ATR-FTIR分析塗抹防曬乳的豬皮於紫外光照射後的組織變化,其結果顯示豬皮本身在紫外線照射下脂質中CO-O的C=O之特徵峰(ν=1745cm-1)、-CH3之特徵峰(ν=1366cm-1)和C-O之特徵峰(ν=1164cm-1)強度有下降之趨勢,並且伴隨脂質過氧化之特峰徵(ν=1260cm-1)強度的提升。來自蛋白質中胺基酸的amide Ⅱ之特徵峰(ν=1539cm-1)、-COO之特徵峰(ν=1574cm-1)以及來自DNA中PO2-非對稱振動之特徵峰(ν=1231)等特徵峰強度會下降,並伴隨胺基特徵峰(ν=3280cm-1)和PO2-對稱振動特徵峰(ν=1095cm-1)強度則是有上升的趨勢。當豬皮塗抹含有PABA、二氧化鈦和氧化鋅的溶液後,經紫外光照射下,由IR圖譜可以觀察到來自蛋白質和DNA之特徵峰的變化與未處理的豬皮類似,而來自脂質經照光而過氧化的特徵峰(ν=1260cm-1)強度有降低之效果,當溶液成分中含有脫層蒙脫石,更是有效阻礙脂質過氧化反應,並隨紫外光照射時間增長,-CO-O的C=O特徵峰強度上升,胺基特徵峰強度下降。

Sunscreen contains both organic and inorganic active ingredients. The organic active ingredient such as para-aminobenzoic acid (PABA) can produce several reactive intermediates under sunlight, and inorganic active ingredients, such as titanium dioxide and zinc oxide, are a well-known semiconductor with photocatalytic properties. When titanium dioxide and zinc oxide are combined with organic filters in sunscreen formulation, they would act as a photocatalyst to accelerate the degradation of organic molecules. To reduce the above-mentioned undesired side effects from UV Sunscreens, we employed the exfoliated montmorillonite(exMMT) as the sunscreen ingredient and investigated its effect on the degradation of organic ingredients and possible protection for the humanskin under UV irradiation.
The experimental results show that the presence of titanium dioxide (TTO and TiO2 Rod) and zinc oxide (ZnO) could increase the UV-vis absorption of PABA at ultraviolet region, but exMMT decreased the UV-vis absorption at 304 nm. All these four ingredients have the catalytic effect on the photochemical reaction of PABA, especially titanium dioxide.
The presence of exMMT and titanium dioxide nanoparticles (TTO and TiO2 Rod) could also increase the PL intensities of PABA at 347nm. Besides, the formation of PABA dimer and aggregation adsorbing on TTO and TiO2 Rod caused a red shift of PL spectrum. Moreover, ZnO could be excited by the emission light from PABA at 347nm and emitted another peak at 386 nm.
To analyze the effect of sunscreen lotion on the changes of pig skin tissue after exposure to UV light, we wiped the sunscreen lotion on pigskin and exposed it to the UV irradiation, which was then subjected to measure the IR spectra by ATR-FTIR. The results showed that for the pristine pigskin, the intensities of characteristic peaks of lipids such as of -C=O at 1745cm-1, -CH3 at 1366cm-1 and C-O at 1164cm-1 decreased with increasing the intensity of 1260cm-1, which has been attributed to the formation of peroxide groups from the peroxidative damage of lipids. The intensities of the characteristic peaks related to the proteins such as amide Ⅱ at 1539cm-1 and -COO non-symmetric stretching vibration at 1574cm-1 decreased with increasing the intensity of 3280cm-1from NH2. As to the characteristic peaks related to DNA, PO2- asymmetric vibration at 1231cm-1 decreased, whereas PO2-symmetric vibration at 1095cm-1 increased. Interestingly, after applying the sunscreen containing the individual PABA, TiO2, ZnO, and their conbinations, the intensity of 1260cm-1 related to the lipid peroxidation weakened, whereas the characteristic peaks of protein and DNA were barely changed compared to the pristine pigskin. When the exMMT was included in the formulation of sunscreen, it significantly hindered the lipid peroxidation along with increasing the intensities of C=O peak and decreasing the intensity of NH2 peak under UV irradiation.

謝誌 .......................................................................................................................................... I
摘要 ............................................................................................................................................... II
Abstract ........................................................................................................................................ IV
目錄 .............................................................................................................................................. VI
表目錄 ........................................................................................................................................... X
圖目錄 .......................................................................................................................................... XI
第一章 緒論 ................................................................................................................................. 1
1-1 前言 ............................................................................................................................... 1
1-2 紫外線 ............................................................................................................................ 3
1-2-1 紫外線的介紹 ........................................................................................................ 3
1-2-2 紫外線的傷害 ........................................................................................................ 4
1-2-3 自由基與反應性氧分子的介紹 ............................................................................ 4
1-2-4 自由基與反應性氧分子對生物體的傷害 ............................................................ 5
1-3 防曬乳液的介紹[8] ....................................................................................................... 7
1-3-1 防曬乳液的成分 .................................................................................................... 7
1-3-2 PABA的介紹 ............................................................................................................ 9
1-3-4 氧化鋅 .................................................................................................................. 17
1-3-5 防曬乳液的潛在問題[8] ..................................................................................... 18
1-4 皮膚的介紹 .................................................................................................................. 20
1-4-1 皮的組織構造 ...................................................................................................... 20
1-4-2 化妝品(包含防曬乳液)的經皮吸收路徑[59] .................................................... 21
1-4-3 皮膚組織研究相關文獻 ...................................................................................... 23
1-5 與本研究相關之項目 .................................................................................................. 28
1-5-1 蛋白質之介紹 ...................................................................................................... 28
1-5-2 皮膚之脂質介紹 .................................................................................................. 31
1-5-3 DNA之介紹 ............................................................................................................ 33
1-5-5 蒙脫石的簡介[77] ............................................................................................... 34
1-6 研究動機 ...................................................................................................................... 40
第二章 實驗設備與方法 ............................................................................................................ 41
2-1 實驗藥品 ...................................................................................................................... 41
2-2 實驗儀器 ...................................................................................................................... 42
2-3 實驗流程 ...................................................................................................................... 43
2-3-1 製備脫層奈米蒙脫石片 ...................................................................................... 43
2-3-2 製備防曬型溶液 .................................................................................................. 44
2-4 測試與分析 .................................................................................................................. 49
2-4-1 X-光粉末繞射分析儀 .............................................................................................. 49
2-4-2 熱重損失分析儀(Thermal Gravimetric Analysis, TGA ) ................................... 49
2-4-3 傅立葉轉換紅外線光譜分析儀(Fourier Transform-Infrared Spectrophotometer, FT-IR) 50
2-4-4 穿透式電子顯微鏡(transmission electron microscopy,TEM) ......................... 50
2-4-5 螢光光譜儀(Photoluminescenece, PL) ................................................................ 51
2-4-6 紫外光/可見光光譜儀(Ultraviolet/ Visible Spectrophotometer) ........................ 51
2-4-7 衰減式全反射之傅立葉轉換紅外線光譜分析(Attenuated-Total-Reflectance Fourier-Transform Infrared Spectroscopy,簡稱ATR-FTIR) ............................................ 52
第三章 結果與討論 .................................................................................................................... 54
3-1 奈米脫層蒙脫石片(exMMT)分析 .............................................................................. 54
3-1-1 熱重損失分析儀之分析 ...................................................................................... 54
3-1-2 穿透式電子顯微鏡之型態分析 .......................................................................... 55
3-2 防曬劑結構與型態分析 .............................................................................................. 57
3-2-1 XRD分析晶型 ........................................................................................................ 59
3-2-2 TEM型態分析 ........................................................................................................ 60
3-3 UV/vis吸收測定無機防曬劑對PABA之影響 ......................................................... 66
3-3-1 exMMT對PABA之UV-vis吸收檢量線的影響 ................................................. 66
3-3-2 TTO對PABA之UV-vis吸收檢量線的影響 ....................................................... 69
3-3-3 TiO2 Rod對PABA之UV-vis吸收檢量線的影響 ............................................... 70
3-3-4 ZnO對PABA之UV-vis吸收檢量線的影響 ....................................................... 72
3-3-5 exMMT對PABA之UV-vis吸收檢量線的影響 ................................................. 72
3-4-1 經照光PABA/exMMT/TTO/PG之UV/vis吸收分析 ...................................... 77
3-4-2 經照光PABA /exMMT/TiO2 Rod之UV/vis吸收分析 .................................... 80
3-4-3 經照光PABA/exMMT/ZnO/PG之UV/vis吸收分析 ...................................... 83
3-5 防曬乳液之螢光光譜儀分析 ...................................................................................... 87
3-5-1 物理性防曬劑對PABA發光光譜的影響 ......................................................... 88
3-5-2 螢光光譜探測PABA之裂解 ............................................................................. 96
3-6 高濃度防曬乳液之分析 ............................................................................................ 115
3-6-1 TEM分析 .............................................................................................................. 115
3-6-2 高濃度防曬乳液之螢光光譜分析 .................................................................... 117
3-7 豬皮之FTIR分析 ..................................................................................................... 134
3-7-1 未經處理豬皮之FTIR分析 ............................................................................. 134
3-7-2 經PABA/PG處理豬皮之FTIR分析 .............................................................. 136
3-7-3 經塗抹TTO/PG溶液豬皮之FTIR分析 ......................................................... 139
3-7-4 經PABA/exMMT/PG處理豬皮之FTIR分析 ................................................ 144
3-7-5 經PABA/exMMT/TTO/PG處理豬皮之FTIR分析 ....................................... 146
第四章 結論 .............................................................................................................................. 150
附錄 ........................................................................................................................................... 159
表目錄
表 1常見防曬乳液的化學性成分[10] ........................................................................................ 7
表 2 Frequencies of vibration bands (cm_1) for DNA isolated from epididymis of low-dose gamma-irradiated ratsa[68]. ................................................................................................. 25
表 3 Frequencies of vibration bands (cm-1) for DNA isolated from epididymis of low-dose gamma-irradiated rats[68] .................................................................................................... 26
表 4 二十種氨基酸之結構 ........................................................................................................ 29
表 5 DNA中的四個鹼基 ........................................................................................................... 33
表 6 低濃度防曬型溶液配方,單位:重量百分比濃度(以Propylene glycol溶劑為100%) ............................................................................................................................................. 46
表 7 高濃度防曬型溶液配方,單位:重量百分比濃度(以Propylene glycol溶劑為100%) ............................................................................................................................................. 47
表 8 使用於豬皮之防曬型溶液濃度配方,單位:重量百分比濃度(以Propylene glycol溶劑為100%) .............................................................................................................................. 48
表 9 TTO之基本性質 ................................................................................................................ 57
表 10 TiO2 Rod之基本性質 ....................................................................................................... 58
表 11 ZnO之基本性質 ............................................................................................................... 58
表 12 IR之波數1260cm-1與1231cm-1之相對強度 ........................................................... 149
圖目錄
圖1- 1太陽光光譜 ....................................................................................................................... 3
圖1- 2 UVC、UVB 及UVA對皮膚的穿透性與傷害之關係[6] ............................................. 4
圖1- 3 Tinosorb M之結構以及對紫外線吸收原理[8] ............................................................... 8
圖1- 4 奈米微粒屏蔽紫外線的原理,其中(a)為反射與(b)為散射方式[8] ............................. 9
圖1- 5 對氨基苯甲酸(Para-aminobenzoic acid,PABA)結構式 ............................................. 10
圖1- 6 不同二氧化鈦的晶型結構 (a)金紅石(b) 銳鈦礦(c) 板鈦礦[22-24] ......................... 12
圖1- 7 二氧化鈦光催化反應機制圖[27] .................................................................................. 13
圖1- 8 4-chlorophenol、azur-B 與α-terpinene之化學結構 .................................................... 17
圖1- 9 氧化鋅的晶體結構[43] .................................................................................................. 17
圖1- 10 Schematic representation of the skin layers and appendages. A. stratum corneum, B. stratum lucidum, C. stratum granulosum, D. stratum spinosum, E. stratum basale, F. papillary layer of the dermis, G. blood vessels, H. duct of sweat gland, I. secretory coil of sweat gland, J. sebaceous gland, K. arrector pili muscle, L. hair bulb, M. hair shaft, N. epidermis, O. dermis, P. hypodermis[58]. ........................................................................... 21
圖1- 11 化妝品成分穿透表皮或細胞間隙經皮吸收路徑 ....................................................... 22
圖1- 12 FTIR images and extracted spectra from a cryo-sectioned pig ear skin sample-with skin surface at the top of the image. Top (from left to right): Integrated intensities of the water OH-stretch region (3650–3000 cm-1), of the amide II band (1590–1480 cm-1), of the CO stretch region (1765–1735 cm-1)and of the CH stretch region (2995–2830 cm-1). (A) Extracted spectra from areas in dermis with high concentrations of proteins/water (black curve) or esters (red curve). (B) Extracted spectrum from an area in epidermis. Circles in the images mark the areas from where the spectra have been extracted. (The colors are visible in the online version of the article.) [63] .................................................................. 24
圖1- 13 The spectra of the normal and cancer tissues at 1800~1500 cm-1 area[69]. .................. 27
圖1- 14 The spectra of the normal and cancer tissues at 1400~1500 cm-1 area[69]. .................. 27
圖1- 15蛋白質的一級結構 ....................................................................................................... 28
圖1- 16 (a)α-helix與(b)β-strand之結構[74] ............................................................................. 30
圖1- 17 肌球蛋白三級結構的飄帶圖,其主要由α螺旋所構成[75] .................................... 30
圖1- 18 角質層脂質Triglyceride(三酸甘油脂)、Ceramides(神經醯胺)、Squalane(鯊烷)及Phospholipid (卵磷脂)之結構 ............................................................................................. 32
圖1- 19去氧核糖核酸(DNA)之化學結構 ................................................................................ 33
圖1- 20蒙脫石的結構[30] ......................................................................................................... 35
圖1- 21 蒙脫石之TEM圖[80] ................................................................................................. 35
圖1- 22 Spatial Arrangement of the Intercalated Ions of (a) L-Phenylalanine in Montmorillonite, (b) L-Tyrosine in Montmorillonite[84] ................................................................................ 37
圖1- 23 (a) siloxane之化學結構(b) 天冬氨酸與蒙脫石吸附之示意圖[85] .......................... 37
圖1- 24 Schematic diagram for the formation mechanism of PMMA and MMT/PMMA nanocomposite latices via soap-free emulsion polymerization[86]. .................................... 39
圖 2- 1 ATR-FTIR模式圖 .......................................................................................................... 53
圖 3- 1 未脫層蒙脫石(MMT)與脫層蒙脫石水溶液(exMMT)之TGA圖 ............................. 55
圖 3- 2 奈米脫層蒙脫石(exMMT)於 (a)倍率30K和(b)倍率50K之TEM圖 .................... 56
圖 3- 3二氧化鈦之XRD圖 ...................................................................................................... 59
圖 3- 4氧化鋅之XRD圖 .......................................................................................................... 60
圖 3- 5 含有TTO之甲醇溶液 於倍率(a) 30K和(b) 100K下觀察之TEM圖,含有PABA與TTO之甲醇溶液於倍率(c) 30K和(d) 100K下觀察之TEM圖,含有PABA、exMMT與TTO之甲醇溶液於倍率(e) 30K和(f) 100K下觀察之TEM圖 ................................. 62
圖 3- 6 PABA被二氧化鈦和蒙脫石吸附之示意圖 ................................................................. 63
圖 3- 7 含有TiO2 Rod之甲醇溶液於倍率(a) 10K和(b) 100K下觀察之TEM圖,含有PABA與TiO2 Rod之甲醇溶液於倍率(c) 10K和(d) 100K下觀察之TEM圖,含有PABA、exMMT與 TiO2 Rod之甲醇溶液於倍率(e) 30K和(f) 100K下觀察之TEM圖........... 64
圖 3- 8含有ZnO之甲醇溶液於倍率(a) 10K和(b) 50K下觀察之TEM圖,含有PABA與 ZnO之甲醇溶液於倍率(c) 10K和(d)50K下觀察之TEM圖,含有PABA、exMMT與ZnO之甲醇溶液於倍率(e) 10K和(f) 50K下觀察之TEM圖 ......................................... 65
圖 3- 9 (a)含有不同濃度PABA之PG溶液與(b) 經normalized處理之UV/vis吸收光譜圖 ............................................................................................................................................. 67
圖 3- 10 PABA在PG溶液中之UV/vis吸收隨濃度改變之檢量線 ...................................... 68
圖 3- 11不同濃度的PABA在含有0.5wt% exMMT的PG溶液中之UV/vis吸收光譜圖 . 68
圖 3- 12 PABA在含有0.5wt% exMMT之PG溶液中之UV/vis吸收檢量線 ...................... 69
圖 3- 13 不同濃度PABA在含有0.5wt% TTO之PG溶液之UV/vis吸收光譜圖.............. 70
圖 3- 14 PABA在含有0.5wt%TTO之PG溶液中的UV/vis吸收檢量線 ............................ 70
圖 3- 15 不同濃度PABA在含有0.5wt% TiO2 Rod之PG溶液中的UV/vis吸收光譜圖 .. 71
圖 3- 16 PABA在含有0.5wt% TiO2 Rod之PG溶液中的UV/vis吸收檢量線 .................... 72
圖 3- 17 不同濃度PABA在含有0.5wt% ZnO之PG溶液中的UV/vis吸收光譜圖 .......... 73
圖 3- 18 PABA在含有0.5wt% ZnO之PG溶液中的UV/vis吸收檢量線 ............................ 73
圖 3- 19 (a)含0.1wt% PABA之PG溶液在不同時間的紫外光照射下之UV/vis吸收光譜圖,(b) 將UV/vis吸收光譜圖normalized到303nm ............................................................. 75
圖 3- 20 (a)含0.1wt% PABA和0.5wt% exMMT之PG溶液在不同時間的紫外光照射下之UV/vis吸收光譜圖,(b) 將UV/vis吸收光譜圖normalized到303nm ......................... 76
圖 3- 21 0.1wt% PABA/PG和0.1wt% PABA/0.5wt%exMMT/PG溶液在不同時間的紫外光照射下之UV/vis吸收 ........................................................................................................ 77
圖 3- 22 (a)含0.1wt% PABA和0.5wt% TTO之PG溶液在不同時間的紫外光照射下之UV/vis吸收光譜圖,(b) 將UV/vis吸收光譜圖normalized到303nm ......................... 78
圖 3- 23 (a)含0.1wt% PABA、0.5wt% exMMT和0.5wt% TTO之PG溶液在不同時間的紫外光照射下之UV/vis吸收光譜圖,(b) 將UV/vis吸收光譜圖normalized到最大光吸收波長 ................................................................................................................................. 79
圖 3- 24 0.1wt% PABA/PG、0.1wt% PABA/ 0.5wt% TTO/PG和0.1wt% PABA/0.5wt% exMMT/0.5wt% TTO/PG溶液在不同時間的紫外光照射下之UV/vis吸收 .................. 80
圖 3- 25(a)含0.1wt% PABA和0.5wt% TiO2 Rod之PG溶液在不同時間的紫外光照射下之UV/vis吸收光譜圖,(b) 將UV/vis吸收光譜圖normalized到304nm ......................... 81
圖 3- 26 (a)含0.1wt% PABA、0.5wt% exMMT和0.5wt% TiO2 Rod之PG溶液在不同時間的紫外光照射下之UV/vis吸收光譜圖,(b) 將UV/vis吸收光譜圖normalized到304nm ............................................................................................................................................. 82
圖 3- 27 0.1wt% PABA、0.1wt% PABA/0.5wt% TiO2 Rod、0.1wt% PABA/0.5wt% exMMT/ 0.5wt% TiO2 Rod/PG溶液在不同時間的紫外光照射下之UV/vis吸收 ........................ 83
圖 3- 28 (a)含0.1wt% PABA和0.5wt% ZnO之PG溶液在不同時間的紫外光照射下之UV/vis吸收光譜圖,(b) 將UV/vis吸收光譜圖normalized到303nm ......................... 85
圖 3- 29 (a)含0.1wt% PABA、0.5wt% exMMT和0.5wt% ZnO之PG溶液在不同時間的紫外光照射下之UV/vis吸收光譜圖,(b) UV/vis吸收光譜圖normalized到303nm ...... 86
圖 3- 30 0.1wt% PABA/PG、0.1wt% PABA/ 0.5wt% ZnO/PG、0.1wt% PABA/0.5wt% exMMT/0.5wt% ZnO/PG溶液在不同時間紫外光照射之UV/vis吸收 .......................... 87
圖 3- 31 (a)含不同濃度PABA之PG溶液的螢光光譜圖,(b) 將螢光光譜圖normalized到最大放光波長 ...................................................................................................................... 88
圖 3- 32 (a)含0.5wt% exMMT之PG溶液與不同濃度PABA在含有0.5wt% exMMT之PG溶液的螢光光譜圖,(b) 將螢光光譜圖normalized到最大放光波長 ........................... 90
圖 3- 33 (a)含0.5wt% TTO之PG溶液與不同濃度PABA在含有0.5wt% TTO之PG溶液的螢光光譜圖,(b) 將螢光光譜圖normalized到最大放光波長 ....................................... 93
圖 3- 34 (a)含0.5wt% TiO2 Rod之PG溶液與不同濃度PABA在含有0.5wt% TiO2 Rod之PG溶液的螢光光譜圖,(b) 將螢光光譜圖normalized到最大放光波長 ..................... 94
圖 3- 35 (a)含0.5wt% ZnO之PG溶液與不同濃度PABA在含有0.5wt% ZnO之PG溶液的螢光光譜圖,(b) 將螢光光譜圖normalized到最大放光波長 ....................................... 95
圖 3- 36含0.5wt% ZnO之PG溶液於激發光347nm所偵測的螢光光譜圖 ........................ 96
圖 3- 37 (a)含0.1wt% PABA之PG溶液紫外光照射不同時間之螢光光譜圖,(b) 將螢光光譜圖normalized至最大放光波長 ...................................................................................... 99
圖 3- 38 (a)含PABA 0.1wt%和exMMT 0.5%之PG溶液經紫外光照射不同時間以及含0.1wt% PABA之PG溶液未經照光之螢光光譜圖,(b) 將螢光光譜圖normalized至最大放光波長 ........................................................................................................................ 100
圖 3- 39 (a)含0.1wt% PABA之PG溶液與不同濃度TTO在含有0.1wt% PABA之PG溶液之螢光光譜圖,(b) 將螢光光譜圖normalized至最大放光波長 ................................. 101
圖 3- 40 (a)含0.1wt% PABA和0.5wt% TTO之PG溶液經紫外光照射不同時間以及含0.1wt%PABA之PG溶液未經照光之螢光光譜圖, (b)將螢光光譜圖normalized至最大發光波長 ........................................................................................................................ 102
圖 3- 41 (a)含0.1wt% PABA之PG溶液、含0.1wt% PABA和0.5wt% exMMT之PG溶液以及不同濃度TTO在含有0.1wt% PABA與0.5wt% exMMT之PG溶液之螢光光譜圖,(b) 將螢光光譜圖normalized至特定的發光波長 ......................................................... 103
圖 3- 42 (a)含0.1wt% PABA之PG溶液與含0.1wt% PABA和0.5wt% exMMT之PG溶液未經照光,以及含0.1wt% PABA、0.5wt% exMMT和0.5wt% TTO之PG溶液經紫外光照射不同時間之螢光光譜圖, (b) 將螢光光譜圖normalized至特定發光波長 ... 104
圖 3- 43 (a)含0.1wt% PABA之PG溶液與不同濃度TiO2 Rod在含有0.1wt% PABA之PG溶液之螢光光譜圖,(b) 將螢光光譜normalized至最大發光波長 ............................. 106
圖 3- 44含0.1wt% PABA之PG溶液未經照光以及含0.1wt% PABA和0.5% TiO2 Rod之PG溶液經紫外光照射不同時間之螢光光譜圖,(b) 將螢光光譜圖normalized至最大發光波長 ............................................................................................................................... 107
圖 3- 45 (a) 含0.1wt%PABA之PG溶液、含0.1wt% PABA和0.5wt% exMMT之PG溶液以及不同濃度TiO2 Rod在含有0.1wt% PABA與0.5wt% exMMT之PG溶液的螢光光譜圖,(b) 將螢光光譜圖normalized至最大發光波長 ................................................. 108
圖 3- 46 (a) 含0.1wt% PABA之PG溶液與含0.1% PABA和0.5wt% exMMT之PG溶液未經照光,以及含有0.1% PABA、0.5wt% exMMT和1wt% TiO2 Rod之PG溶液經紫外光照射不同時間之螢光光譜圖,(b) 將螢光光譜圖normalized至最大發光波長 . 109
圖 3- 47 (a)含0.1wt% PABA之PG溶液以及不同濃度ZnO在0.1wt% PABA之PG溶液之螢光光譜圖,(b)將螢光光譜圖normalize至最大發光波長 ......................................... 111
圖 3- 48 (a)含0.1wt% PABA之PG溶液未經照光以及含0.1wt% PABA和0.5%ZnO之PG溶液經紫外光照射不同時間之螢光光譜圖,(b) 將螢光光譜圖normalized至最大發光波長 ................................................................................................................................... 112
圖 3- 49 (a)含0.1wt% PABA之PG溶液、含0.1wt% PABA和0.5wt%/ exMMT之PG溶液以及不同濃度ZnO在含有0.1wt% PABA與0.5wt%/ exMMT之PG溶液之螢光光譜圖,(b)將螢光光譜normalized至最大發光波長 ................................................................... 113
圖 3- 50 (a)含0.1wt% PABA之PG溶液與含0.1wt% PABA和0.5wt% exMMT之PG溶液未經照光,以及含0.1wt% PABA、0.5wt% exMMT和0.5wt% ZnO之PG溶液經紫外光照射不同時間之螢光光譜圖,(b) 將螢光光譜圖normalized至最大發光波長 ..... 114
圖 3- 51 濃度為2wt%的exMMT之水溶液於倍率(a)30K 與(b)100K之TEM圖 ........... 116
圖 3- 52 含2wt% PABA和2wt% exMMT之水溶液於倍率(a)30K與(b)100K之TEM圖 ........................................................................................................................................... 116
圖 3- 53 含2wt% PABA、2wt% exMMT和2wt% TTO之水溶液於倍率(a)30K與(b)100K之TEM圖 ......................................................................................................................... 116
圖 3- 54 含2wt% PABA、2wt% exMMT和2wt% TiO2 Rod之水溶液於倍率(a)30K與(b)100K之TEM圖 ........................................................................................................... 117
圖 3- 55 含2wt% PABA、2wt% exMMT和2wt% ZnO之水溶液於倍率(a)10K與(b)30K之TEM圖 .............................................................................................................................. 117
圖 3- 56 (a)含2wt% PABA之PG溶液經紫外光線照射不同時間之螢光光譜圖,(b) 將螢光光譜normalized至最大發光波長 .................................................................................... 119
圖 3- 57 (a) 含2wt% PABA之PG溶液未經照光以及含2wt% PABA和2wt% exMMT之PG溶液經紫外光照射不同時間之螢光光譜圖,(b) 將螢光光譜圖normalized至最大發光波長 ............................................................................................................................... 120
圖 3- 58 (a) 不同濃度TTO在含有0.2wt% PABA和之PG溶液之螢光光譜圖,(b) 將螢光光譜normalized至特定發光波長 .................................................................................... 122
圖 3- 59 (a)含有2wt% PABA之PG溶液未經照光以及含2wt% PABA和1.5wt% TTO之PG溶液經紫外光線照射不同時間之螢光光譜圖,(b) 將螢光光譜圖normalized至特定發光波長 ............................................................................................................................... 123
圖 3- 60 含2wt% PABA之PG溶液、含2wt% PABA和2wt% exMMT之PG溶液以及不同濃度TTO在含有2wt% PABA和2wt% exMMT之PG溶液的螢光光譜圖 ........... 124
圖 3- 61 含2wt% PABA之PG溶液與含2wt% PABA和2wt% exMMT之PG溶液未經照光,以及含2wt% PABA、2wt% exMMT和1.5wt% TTO之PG溶液經紫外光照射不同時間之螢光光譜圖 ............................................................................................................ 124
圖 3- 62 (a)含2wt% PABA之PG溶液和不同濃度TiO2 Rod在含有2wt% PABA之PG溶液之螢光光譜圖,(b)將螢光光譜圖normalized至特定發光波長 ................................... 126
圖 3- 63 (a)含2wt% PABA之PG溶液未經照光,以及含有2wt% PABA和1.5wt% TiO2 Rod之PG溶液經紫外光照射不同時間之螢光光譜圖,(b)將螢光光譜圖normalized至特定發光波長 ............................................................................................................................ 127
圖 3- 64 含2wt% PABA之PG溶液、含2wt% PABA 和2wt% exMMT之PG溶液以及不同濃度TiO2 Rod在含有2wt% PABA和2wt% exMMT之PG溶液之螢光光譜圖 .. 128
圖 3- 65 含2wt% PABA之PG溶液、含2wt% PABA和2wt% exMMT之PG溶液未經照光,以及含2wt% PABA、2wt% exMMT和1.5wt%TiO2 Rod之PG溶液經紫外光照射15分鐘之螢光光譜圖 ....................................................................................................... 128
圖 3- 66 (a)含2wt% PABA之PG溶液以及不同濃度ZnO在含有wt% PABA之PG溶液之螢光光譜圖,(b)將螢光光譜圖normalized至最大發光波長 ................................... 130
圖 3- 67 (a)含2wt% PABA之PG溶液未經照光以及含2wt% PABA 和1.5wt% ZnO之PG溶液經紫外線照射不同時間之螢光光譜圖,(b)將螢光光譜圖normalized至最大發光波長 ....................................................................................................................................... 131
圖 3- 68 (a)含2wt% PABA之PG溶液、含2wt% PABA和2wt% exMMT以及不同濃度ZnO在含有2wt% PABA和2wt% exMMT之PG溶液的螢光光譜圖,(b)將螢光光譜圖normalized至最大發光波長 ............................................................................................. 132
圖 3- 69 (a)含2wt%PABA 之PG溶液與含2wt% PABA和2wt% exMMT之PG溶液未經照光,以及含2wt%PABA、2wt% exMMT和1.5wt%ZnO之PG溶液經紫外光照射不同時間之螢光光譜圖,(b)將螢光光譜圖normalized至最大發光波長 ....................... 133
圖 3- 70 未經處理豬皮之FTIR圖譜,(a)以2920cm-1為基準,(b)以1640cm-1為基準,(c)含波數為1231和1260 cm-1之FTIR圖譜 ..................................................................... 136
圖 3- 71 經塗抹PABA/PG溶液的豬皮並以紫外光照射不同時間之FTIR圖譜,(a)以2920cm-1為基準,(b)以1640cm-1為基準,(c)含波數為1231和1260 cm-1之FTIR圖譜 ........................................................................................................................................... 139
圖 3- 72 經塗抹TTO/PG溶液處理的豬皮並以紫外光照射不同時間之FTIR圖譜,(a)以2920cm-1為基準,(b)以1640cm-1為基準,(c)含波數為1231和1260cm-1之FTIR圖譜 ........................................................................................................................................... 142
圖 3- 73 經塗抹PABA/TTO/PG溶液處理的豬皮並以紫外光照射不同時間之FTIR圖譜,(a)以2920cm-1為基準,(b)以1640cm-1為基準,(c)含波數為1231和1260cm-1之FTIR圖譜 ................................................................................................................................... 143
圖 3- 74 經塗抹PABA/exMMT/PG溶液處理的豬皮並以紫外光照射不同時間之FTIR圖譜,(a)以2920cm-1為基準,(b)以1640cm-1為基準,(c)含波數為1231和1260cm-1之FTIR圖譜 ................................................................................................................................... 146
圖 3- 75 經塗抹PABA/exMMT/TTO/PG溶液處理的豬皮並以紫外光照射不同時間之FTIR圖譜,(a)以2920cm-1為基準,(b)以1640cm-1為基準,(c)含波數為1260cm-1之FTIR圖譜 ................................................................................................................................... 149

1. Gasparro FP. Sunscreens, skin photobiology, and skin cancer: the need for UVA protection and evaluation of efficacy. Environmental Health Perspectives 2000,108:71.
2. Sunscreens : regulations and commercial development. Boca Raton ; London :: Taylor & Francis; 2005.
3. 王建國、劉海峰、王建新. 防曬劑Parsol 1789 光分解抑制的研究. 香料香精化妝品 2002,1.
4. 曹錦芳、周潔. 防曬劑及其複配防曬劑的光穩定測試. 日用化學工業 2004,3-4:259-261.
5. Gomara B, Garcia Ruiz C, Marina ML. Enantioselective separation of the sunscreen agent 3 (4 methylbenzylidene) camphor by electrokinetic chromatography: Quantitative analysis in cosmetic formulations. Electrophoresis 2005,26:3952-3959.
6. 蘇湘津. 抗日大作戰. HERBALIFE.
7. 黃榮宗. 認識自由基與檢測自由基. 生達刊物,春季號第26期.
8. 黃景弘, 劉如熹, 賴宗慶, 蕭宏昇. 奈米材料於防曬化粧品之應用. 物理雙月刊 2010,32卷:105-109.
9. Allen JM, Gossett CJ, Allen SK. Photochemical formation of singlet molecular oxygen in illuminated aqueous solutions of several commercially available sunscreen active ingredients. Chemical research in toxicology 1996,9:605-609.
10. 吳英俊. 實用皮膚醫學. 台大皮膚科部編 2003,初版:421-423.
11. Gonzalez-Perez R, Trebol I, Garcia-Rio I, Arregui MA, Soloeta R. Allergic contact dermatitis from methylene-bis-benzotriazolyl tetramethylbutylphenol (Tinosorb MR). Contact dermatitis 2007,56:121-121.
12. Gonzalez Perez R, Trebol I, Garcia Rio I, Arregui MA, Soloeta R. Allergic contact dermatitis from methylene bis benzotriazolyl tetramethylbutylphenol (Tinosorb MR). Contact dermatitis 2007,56:121-121.
13. Bruze M, Gruvberger B, Thulin I. PABA, benzocaine, and other PABA esters in sunscreens and after-sun products. Photodermatology, photoimmunology & photomedicine 1990,7:106.
14. Dromgoole SH, Maibach HI. Sunscreening agent intolerance: contact and photocontact sensitization and contact urticaria. Journal of the American Academy of Dermatology 1990,22:1068-1078.
15. Chignell CF, Kalyanaraman B, Mason RP, Sik RH. SPECTROSCOPIC STUDIES OF CUTANEOUS PHOTOSENSITIZING AGENTS!XI. SPIN TRAPPING OF PHOTOLYSIS PRODUCTS FROM SULFANILAMIDE, 4 AMINOBENZOIC ACID AND RELATED COMPOUNDS. Photochemistry and Photobiology 1980,32:563-571.
16. Subramanian P, Ramakrishnan V, Rajaram J, Kuriacose J. Reaction of the phosphate radical with amines!XA flash photolysis study. Journal of Chemical Sciences 1986,97:573-580.
17. Shaw AA, Wainschel LA, Shetlar MD. THE PHOTOCHEMISTRY OF p AMINOBENZOIC ACID. Photochemistry and Photobiology 1992,55:647-656.
18. Serpone N, Salinaro A, Emeline AV, Horikoshi S, Hidaka H, Zhao J. An in vitro systematic spectroscopic examination of the photostabilities of a random set of commercial sunscreen lotions and their chemical UVB/UVA active agents. Photochemical & Photobiological Sciences 2002,1:970.
19. Rossi C, Schoubben A, Ricci M, Perioli L, Ambrogi V, Latterini L, et al. Intercalation of the radical scavenger ferulic acid in hydrotalcite-like anionic clays. International Journal of Pharmaceutics 2005,295:47-55.
20. Ambrogi V, Fardella G, Grandolini G, Perioli L, Tiralti MC. Intercalation compounds of hydrotalcite-like anionic clays with anti-inflammatory agents, II: uptake of diclofenac for a controlled release formulation. AAPS PharmSciTech 2002,3:77-82.
21. Perioli L, Ambrogi V, Bertini B, Ricci M, Nocchetti M, Latterini L, et al. Anionic clays for sunscreen agent safe use: Photoprotection, photostability and prevention of their skin penetration. European Journal of Pharmaceutics and Biopharmaceutics 2006,62:185-193.
22. Diebold U. The surface science of titanium dioxide. Surface Science Reports 2003,48:53-229.
23. Hanaor D, Sorrell C. Review of the anatase to rutile phase transformation. Journal of Materials Science 2011,46:855-874.
24. Pauling L, Sturdivant JH. The crystal structure of brookite. Kristullogr 1928,68:239-256.
25. Greenwood NN, Earnshaw A, Knovel. Chemistry of the Elements. 1984:1117–1119.
26. Serpone N, Lawless D, Khairutdinov R, Pelizzetti E. Subnanosecond relaxation dynamics in TiO2 colloidal Sols (particle sizes Rp= 1.0-13.4 nm). relevance to heterogeneous photocatalysis. The Journal of Physical Chemistry 1995,99:16655-16661.
27. Al-Ekabi H, Serpone N. Kinetics studies in heterogeneous photocatalysis. I. Photocatalytic degradation of chlorinated phenols in aerated aqueous solutions over titania supported on a glass matrix. The Journal of Physical Chemistry 1988,92:5726-5731.
28. Horikoshi S, Serpone N, Zhao J, Hidaka H. Towards a better understanding of the initial steps in the photocatalyzed mineralization of amino acids at the titania/water interface. An experimental and theoretical examination of -alanine, -serine and -phenylalanine. Journal of Photochemistry and Photobiology A: Chemistry 1998,118:123-129.
29. Hancock-Chen T, Scaiano JC. Enzyme inactivation by TiO2 photosensitization. J Photochem Photobiol B 2000,57:193-196.
30. 蔡宗燕. 強塑廣用新知. 1998,76:58.
31. Bernard M, Cachet H, Falaras P, Hugot-Le Goff A, Kalbac M, Lukes I, et al. Sensitization of TiO2 by polypyridine dyes: Role of the electron donor. Journal of the Electrochemical Society 2003,150:E155-E164.
32. Li Y, Zhao B, Xie S, Zhang S. Synthesis and properties of poly (methyl methacrylate)/montmorillonite (PMMA/MMT) nanocomposites. Polymer international 2003,52:892-898.
33. Wamer WG, Yin JJ, Wei RR. Oxidative damage to nucleic acids photosensitized by titanium dioxide. Free Radical Biology and Medicine 1997,23:851-858.
34. Turcotte P. Enzyme inactivation by photoexcited titanium dioxide (TiO ) and prevention by encapsulation. 2003.
35. Salahuddin N, Shehata M. Polymethylmethacrylate-montmorillonite composites: preparation, characterization and properties. Polymer 2001,42:8379-8385.
36. Shen B, Scaiano JC, English AM. Zeolite Encapsulation Decreases TiO2-photosensitized ROS Generation in Cultured Human Skin Fibroblasts†. Photochemistry and Photobiology 2006,82:5.
37. Szacilowski K, Macyk W, Drzewiecka-Matuszek A, Brindell M, Stochel G. Bioinorganic photochemistry: frontiers and mechanisms. Chemical reviews 2005,105:2647-2694.
38. Stochel G, ebrary I. Bioinorganic photochemistry: Wiley Online Library; 2009.
39. Zallen R, Moret M. The optical absorption edge of brookite TiO2. Solid state communications 2006,137:154-157.
40. Macyk W, Franke A, Stochel G. Metal compounds and small molecules activation-case studies. Coordination chemistry reviews 2005,249:2437-2457.
41. Venkatachalam N, Palanichamy M, Murugesan V. Sol-gel preparation and characterization of alkaline earth metal doped nano TiO2: Efficient photocatalytic degradation of 4-chlorophenol. Journal of Molecular Catalysis A: Chemical 2007,273:177-185.
42. Gnaser H, Savina MR, Calaway WF, Tripa CE, Veryovkin IV, Pellin MJ. Photocatalytic degradation of methylene blue on nanocrystalline TiO2: Surface mass spectrometry of reaction intermediates. International Journal of Mass Spectrometry 2005,245:61-67.
43. Ozgur U, Alivov YI, Liu C, Teke A, Reshchikov M, Do an S, et al. A comprehensive review of ZnO materials and devices. Journal of Applied Physics 2005,98:041301.
44. Li D, Haneda H. Morphologies of zinc oxide particles and their effects on photocatalysis. Chemosphere 2003,51:129-137.
45. Aslam M, Chaudhary V, Mulla I, Sainkar S, Mandale A, Belhekar A, et al. A highly selective ammonia gas sensor using surface-ruthenated zinc oxide. Sensors and Actuators A: Physical 1999,75:162-167.
46. Mclaren A, Valdes-Solis T, Li G, Tsang SC. Shape and size effects of ZnO nanocrystals on photocatalytic activity. Journal of the American Chemical Society 2009,131:12540-12541.
47. Gasparro F. UV-induced photoproducts of para-aminobenzoid acid. Photo-dermatology 1985,2:151.
48. Judeinstein P, Sanchez C. Hybrid organic-inorganic materials: a land of multidisciplinarity. Journal of Materials Chemistry 1996,6:511-525.
49. Zanetti M, Camino G, Thomann R, Mulhaupt R. Synthesis and thermal behaviour of layered silicate-EVA nanocomposites. Polymer 2001,42:4501-4507.
50. Kornmann X, Lindberg H, Berglund LA. Synthesis of epoxy-clay nanocomposites: influence of the nature of the clay on structure. Polymer 2001,42:1303-1310.
51. Gratzel M. Photoelectrochemical cells. Nature 2001,414:338-344.
52. Damiani E, Baschong W, Greci L. UV-Filter combinations under UV-A exposure: Concomitant quantification of over-all spectral stability and molecular integrity. Journal of Photochemistry and Photobiology B: Biology 2007,87:95-104.
53. Buege JA, Aust SD. Microsomal lipid peroxidation. In: Methods in Enzymology. Edited by Sidney F, Lester P: Academic Press; 1978. pp. 302-310.
54. Coelho GLN, Dornelas CB, Soares KCC, dos Santos EP, Vergnanini AL, dosSantos TC, et al. Preparation and Evaluation of Inclusion Complexes of Commercial Sunscreens in Cyclodextrins and Montmorillonites: Performance and Substantivity Studies. Drug Development and Industrial Pharmacy 2008,34:536-546.
55. Chretien MN, Migahed L, Scaiano JC. Protecting the protectors: reducing the biological toxicity of UV sunscreens by zeolite encapsulation. Photochem Photobiol 2006,82:1606-1611.
56. Frandson R, Spurgeon T. Anatomy of the digestive system. Anatomy and Physiology of Farm Animals 1992:304-332.
57. Woodhead-Galloway J. Collagen, the Anatomy of a Protein. The Institute of Biology''s Studies in Biology# 117 1980:1-59.
58. Mowafy M, Cassens R. Microscopic structure of pig skin. Journal of Animal Science 1975,41:1281.
59. 郭慧玲. 永久性染髮劑的氧化反應產物之經皮吸收. 嘉南藥理科技大學 2009,碩士論文.
60. Hsia CY. Percutaneous Absorption of para-Phenylenediamine and para-Aminophenol Oxidative Hair Dyes. 2006.
61. Diembeck W, Beck H, Benech-Kieffer F, Courtellemont P, Dupuis J, Lovell W, et al. Test guidelines for in vitro assessment of dermal absorption and percutaneous penetration of cosmetic ingredients. Food and Chemical Toxicology 1999,37:191-205.
62. Bonferoni M, Rossi S, Ferrari F, Caramella C. A modified Franz diffusion cell for simultaneous assessment of drug release and washability of mucoadhesive gels. Pharmaceutical development and technology 1999,4:45-53.
63. Greve TM, Andersen KB, Nielsen OF, Engdahl A. FTIR imaging and ATR-FT-Far-IR synchrotron spectroscopy of pig ear skin. Spectroscopy 2010,24:105-111.
64. Stuart B, Ando DJ. Biological applications of infrared spectroscopy: Wiley; 1997.
65. Barry BW, Edwards HGM, Williams AC. Fourier transform Raman and infrared vibrational study of human skin: Assignment of spectral bands. Journal of Raman Spectroscopy 1992,23:641-645.
66. Smith KC, O''Leary ME. Photoinduced DNA-protein cross-links and bacterial killing: a correlation at low temperatures. Science 1967,155:1024.
67. Fornace Jr AJ, Kohn KW. DNA-protein cross-linking by ultraviolet radiation in normal human and xeroderma pigmentosum fibroblasts. Biochimica et Biophysica Acta (BBA)-Nucleic Acids and Protein Synthesis 1976,435:95-103.
68. Dovbeshko GI, Gridina NY, Kruglova EB, Pashchuk OP. FTIR spectroscopy studies of nucleic acid damage. Talanta 2000,53:233-246.
69. Wang JS, Shi JS, Xu YZ, Duan XY, Zhang L, Wang J, et al. FT-IR spectroscopic analysis of normal and cancerous tissues of esophagus. WORLD JOURNAL OF GASTROENTEROLOGY 2003,9:1897-1899.
70. Gersten J, Nitzan A. Spectroscopic properties of molecules interacting with small dielectric particles. The Journal of Chemical Physics 1981,75:1139.
71. Gersten J, Nitzan A. Radiative properties of solvated molecules in dielectric clusters and small particles. The Journal of Chemical Physics 1991,95:686.
72. Weitz D, Garoff S, Gersten J, Nitzan A. The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface. The Journal of Chemical Physics 1983,78:5324.
73. 王書任, 林仁鈞. 讓LED發光的功臣-螢光粉. 科學發展 2009,435期.
74. 王自豪, 林誠謙, 李弘謙. 談蛋白質折疊與氨基酸序列. 物理雙月刊,二十四卷二期.
75. Branden C, Tooze J. Introduction to protein science. Garland, New York 1991.
76. Downing D, Stewart M, Wertz P, Strauss J. Lipids of the epidermis and the sebaceous glands. Dermatology in General Medicine. New York, McGraw-Hill 1993:210!V220.
77. 徐國財、張立德. 奈米複合材料. 五南出版社 2004:324.
78. Lee DC, Jang LW. Preparation and characterization of PMMA!Vclay hybrid composite by emulsion polymerization. Journal of Applied Polymer Science 1996,61:1117-1122.
79. 徐志宇. 幾丁聚醣/蒙脫石複合材料之支架備製. 國立台灣大學材料與工程學研究所, 碩士論文 2003.
80. Lin K-F, Lin S-C, Chien A-T, Hsieh C-C, Yen M-H, Lee C-H, et al. Exfoliation of montmorillonite by the insertion of disklike micelles via the soap-free emulsion polymerization of methyl methacrylate. Journal of Polymer Science Part A: Polymer Chemistry 2006,44:5572-5579.
81. 翟永功. Use of montmorillonite as cosmetic ingredient. CN 1326728 2001.
82. Patil AA, Sandewicz RW, Calello JF. Cosmetic Compositions Containing Silicone/Organic Copolymer. In: US Patent App. 20,090/053,155; 2008.
83. Sandewicz RW, Pagano FC, Patil AA, Calello JF. Cosmetic compositions with montmorillonite stabilizing agent. In: US Patent App. 20,060/078,578; 2004.
84. Fudala A, Palinko I, Kiricsi I. Preparation and characterization of hybrid organic-inorganic composite materials using the amphoteric property of amino acids: amino acid intercalated layered double hydroxide and montmorillonite. Inorganic Chemistry 1999,38:4653-4658.
85. Naidja A, Huang PM. Aspartic acid interaction with Ca-montmorillonite:adsorption, desorption and thermal stability. Applied Clay Science 1994,9:265-281.
86. Lin K-J, Dai C-A, Lin K-F. Revisit to the formation mechanism of exfoliated montmorillonite/PMMA nanocomposite latex through soap-free emulsion polymerization. Journal of Polymer Science Part A: Polymer Chemistry 2009,47:459-466.
87. 鄭玉慧. NaPSS聚電解質溶液行為之探討: 國立臺灣大學材料科學與工程學研究所; 1999.
88. Zhang Q, Gao L, Guo J. Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis. Applied Catalysis B: Environmental 2000,26:207-215.
89. Lu C-H, Yeh C-H. Influence of hydrothermal conditions on the morphology and particle size of zinc oxide powder. Ceramics International 2000,26:351-357.
90. Lee SW, Ichinose I, Kunitake T. Molecular imprinting of azobenzene carboxylic acid on a TiO2 ultrathin film by the surface sol-gel process. Langmuir 1998,14:2857-2863.
91. Hagfeldt A, Graetzel M. Light-induced redox reactions in nanocrystalline systems. Chemical Reviews;(United States) 1995,95.
92. Persson P, Bergstrom R, Ojamae L, Lunell S. Quantum-chemical studies of metal oxides for photoelectrochemical applications. In: Advances in Quantum Chemistry: Academic Press; 2002. pp. 203-263.
93. Zhang QL, Du LC, Weng YX, Wang L, Chen HY, Li JQ. Particle-size-dependent distribution of carboxylate adsorption sites on TiO2 nanoparticle surfaces: insights into the surface modification of nanostructured TiO2 electrodes. The Journal of Physical Chemistry B 2004,108:15077-15083.
94. Park S, Querner T, Kampen TU, Braun W, Zahn DRT. The interface formation of PTCDA on Se-modified GaAs(100) surfaces. Applied Surface Science 2000,166:376-379.
95. Kackell P, Terakura K. Dissociative adsorption of formic acid and diffusion of formate on the TiO2(110) surface: the role of hydrogen. Surface Science 2000,461:191-198.
96. Kumiko S., Y. S. Quantitative and non-destructive analyses of fatty acid esters and cholesterol in brain tissues by Fourier transform infrared spectroscopy. Vibrational Spectroscopy 1994,7:163-167.
97. Sills RH, Moore DJ, Mendelsohn R. Erythrocyte peroxidation: quantitation by Fourier transform infrared spectroscopy. Analytical Biochemistry 1994,218:118-123.





QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top