跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.138) 您好!臺灣時間:2025/12/07 17:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:易智富
研究生(外文):YI, CHIH-FU
論文名稱:亞波長週期凹槽微帶線的傳波行為分析
論文名稱(外文):Propagation Behavior Analysis of Subwavelength Periodic Groove Microstrip Line
指導教授:吳家和
指導教授(外文):WU, JIN-JEI
口試委員:吳家和林奎輝高曜煌
口試委員(外文):WU, JIN-JEILIN, KUEI-HUEIKAO, YAO-HUANG
口試日期:2017-07-22
學位類別:碩士
校院名稱:中華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:46
中文關鍵詞:人工表面等離子激元差分微帶線等效電路共模效應串擾
外文關鍵詞:spoof surface plasmon polaritons (spoof SPPs)differential microstripequivalent circuitcrosstalkcommon mode effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:195
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
研發出一種新形式差分微帶線,能夠以人工表面等離子激元在低頻段傳播。藉由對差分對傳統微帶線,其邊緣引入開放式狹縫週期性亞波長結構,來設計新形式差分微帶線。根據數值分析與實驗分析來進行驗證,這種差分週期性結構微帶線,在微波頻段是以奇模形態的人工表面等離子激元傳播。相較於傳統的差分微帶線,其人工表面等離子激元模式能被高度約束在週期性結構差分微帶線的金屬表面,這能降低差分對週期結構微帶線的共模效應,以及差分對週期結構微帶線對單端微帶線的串擾。我們也使用有限元素方法來分析亞波長週期結構差分微帶線的等效電路。藉由時域量測來驗證微帶線阻抗的數值分析結果。因此,這類新型的亞波長週期結構微帶線對於高密度的微波電路和高速電路系統,將會有較好的效果來改善它們信號的完整性。

關鍵字:人工表面等離子激元 ,差分微帶線 ,等效電路 ,共模效應 ,串擾

A new type of differential microstrip lines on which the spoof surface plasmon polaritons (spoof SPPs) can propagate at low frequency band is developed. The differential microstrip line structure is designed by introducing open slit periodic subwavelength pattern on the edge of coupled traditional microstrip lines. Numerical and experimental analysis verify that such differential periodically structured microstrip lines support odd type of spoof surface plasmon polaritons(SPPs) at microwave frequencies. Compared with the traditional differential microstrip line, the spoof SPPs mode can be highly localized on the surface of the structured differential microstrip line, and so the crosstalk and common mode effect between differential structured microstrip line and single microstrip line is very low. We also analysis the equivalent circuit of subwavelength periodic structured microstrip lines using finite element method. The TDR measurement the impedance of microstrip lines verified numerical results. Therefore, this new kind of differential periodically structured microstrip line would be of great use in high density microwave circuits and high speed systems to improve signal integrity efficiency.

Keyword: spoof surface plasmon polaritons (spoof SPPs) , differential microstrip ,equivalent circuit , crosstalk , common mode effect

摘要....................................................................i
ABSTRACT............................................................ii
致謝..................................................................iii
目錄..................................................................iv
圖目錄.................................................................v
第一章緒論.............................................................1
1.1相關回顧..........................................................1
1.2研究動機..........................................................2
第二章數值分析..........................................................3
2.1結構介紹..........................................................3
2.2色散..............................................................6
2.3傳播長度..........................................................9
第三章等效電路.........................................................13
3.1微帶線單包電路....................................................13
3.2電感.............................................................14
3.3電容.............................................................17
3.4阻抗.............................................................22
第四章差分耦合電路.....................................................26
4.1差分形式.........................................................26
4.2耦合電路.........................................................28
4.3實際量測.........................................................33
結論..................................................................37
參考文獻..............................................................38

[1] Raether, H.: ‘Surface Plasmons’, (Springer-Verlag, Berlin, 1988)
[2] Stepanov, A. L., Krenn, J. R., Ditlbacher, H., Hohenau, A., Drezet, A., Steinberger, B., Leitner, A., and Aussenegg, F. R.: ‘Quantitative analysis of surface plasmon interaction with silver nanoparticles’, Optics Lett., , 2005, 30, pp.1524-1526
[3] Liu L., Han Z., and He S., “Novel surface plasmon waveguide for high integration”, Opt. Express, Vol.13, 6645-6650, 2005.
[4] Pendry, J. B., Martin-Moreno, L., and Garcia-Vidal, F. J.: ‘Mimicking surface plasmons with structured surfaces’, Science, 2004, 305, pp.847-848
[5] Garcia de Abajo, F.J., and Saenz, J.J.: ‘Electromagnetic surface modes in structured perfect-conductor surfaces’, Phys. Rev. Lett., 2005, 95, p. 233901
[6] García de Abajo F. J., “Light scattering by particle and hole arrays”, Rev. Modern Phys, Vol. 79, pp.1267-1290, 2007
[7] Maier, S. A., S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires," Phys. Rev. Lett., Vol. 97, 176805-1-4, 2006.
[8] Hibbins P., Evans B. R., and Sambles J. R., “Experimental verification of designer Surface plasmons”, Science, Vol. 308, 670-672, 2005.
[9] Koo S.K., Lee H.S. and Park Y. B., “Crosstalk reduction effect of asymmetry stub loaded lines”, Journal of Electromagnetic Waves and Applications, Vol. 25, pp.1156-1167, 2011.
[10] Koo S.K., Lee H.S. and Park Y. B., “Crosstalk reduction effect of asymmetry stub loaded lines”, Journal of Electromagnetic Waves and Applications, Vol. 25, pp.1156-1167, 2011.
[11] Shen, L. F., Chen, X., Zhong, Y., and Agarwal, K.: ‘Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires’, Phys. Rev. B, 2008, 77, (7), 075408
[12] Amin Kianinejad , Zhi Ning Chen , and Cheng-Wei Qiu , “Design and Modeling of Spoof Surface Plasmon Modes-Based Microwave Slow-Wave Transmission Line”, IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 6, June 2015
[13] Amin Kianinejad, Zhi Ning Chen, and Cheng-Wei , “Low-Loss Spoof Surface Plasmon Slow-Wave Transmission Lines With Compact Transition and High Isolation”, IEEE Transaction on Microwave Theroy and Techniques, Vol. 64, No. 10, October 2016

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top