跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/02 14:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃浩修
研究生(外文):Huang, Hau-Shiou
論文名稱:基於誘發複合動作電位與電場成像的個人化模型
論文名稱(外文):Patient-specific Models based on Evoked Compound Action Potential and Electrical Field Imaging
指導教授:蔡德明蔡德明引用關係
指導教授(外文):Choi, T. M.
口試委員:陳光超李宜軒蔡德明
口試委員(外文):Chen, Kuang-ChaoLee, Yi-HsuanChoi, T.M.
口試日期:2016-07-28
學位類別:碩士
校院名稱:國立交通大學
系所名稱:生醫工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:英文
論文頁數:57
中文關鍵詞:人工電子耳電腦斷層螺旋神經節密度電場成像誘發複合動作電位蘋果核
外文關鍵詞:cochlear implantcomputed tomographyspiral ganglion cellselectric field imagingevoked compound action potentialapple-core ECAP
相關次數:
  • 被引用被引用:0
  • 點閱點閱:202
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
透過電腦斷層獲得人工電子耳使用者的耳蝸的物理尺寸之後,結合人工電子耳臨床量測,使得建立一個更精確的電神經模型是可行的。這篇論文提出眾多方法中的其中一種。一個精確的個人化電神經模型能夠被用來微調電刺激參數,或者能夠不需要繁瑣的人工電子耳調頻動作而完成調頻。明顯地這對於應用在兒童的人工電子耳使用者來說具有極大的意義。

這篇論文的目的是在評估對於使用人工電子耳的人類而言,其相對的螺旋神經節密度。透過對人工電子耳使用者進行電場成像的量測,可以獲得延著耳蝸的電位能。而且對人工電子耳使用者而言,誘發複合動作電位的閾值和聽覺閾值有很大的關聯。誘發複合動作電位量測方法是客觀的且較快速的方法來獲得相對應的閾值。再一次地說,這對於兒童的人工電子耳使用者的調頻應用有很大的意義,因為無法要求他們會有所回饋。由於刺激的範圍很大,因此提出「蘋果核」-誘發複合動作電位的方法,其方法限制被刺激的聽神經能夠狹小到相鄰兩電極之間的區域。因為聽神經被激發的區域和電極與螺旋神經節的距離都已固定,透過比較不同的刺激電極所量測到的螺旋神經節訊號,可獲得相對螺旋神經節密度。
With physiological dimensions of the cochlear implant (CI) patient’s cochlea from computed tomography (CT), it is possible to build a more accurate patient-specific electro-neural model of CI patients based on clinical measurements. One of such methods is proposed in this thesis. An accurate patient specific electro-neural model could be used for fine tuning the electrical stimulation parameters or “maps” of a CI patient without needing many CI mapping sessions. This has enormous implication for CI pediatric applications due to obvious reason.

The goal of this thesis is to evaluate the relative spiral ganglion cells (SGC) density of a human CI patient. The electric potential along the cochlea in a CI patient can be measured via electric field imaging (EFI). Also, there is a significant correlation between evoked compound action potential (ECAP) threshold and behavior threshold (T) level for a CI patient. ECAP measurement approach is an objective and faster way to obtain the relative T level of a CI patient. This again has important implication for pediatric CI mapping application since it does not require feedback from pediatric CI patients. Due to a large stimulating range, we propose to use the idea of using “apple-core”-ECAP paradigm which can limit the auditory nerves being stimulated to a narrower volume between neighboring two electrodes. Since the volume of auditory nerves activated and the distance between electrode and SGC are fixed, we can obtain the relative SGC density through comparing with every SGC signal at different electrodes.
Chapter 1: Introduction 7
1.1 Motivation 7
1.2 Hearing 7
1.3 Cochlear Implants (CI) 8
1.4 Thesis Goal 9
Chapter 2: Background Research 11
2.1 Electrical Field Imaging (EFI) 11
2.2 Electrically Evoked Compound Action Potential (ECAP) 18
2.3 Amplitude Growth Function (AGF) 21
2.4 Spatial Spread and Spatial Masking 22
2.5 Apple-core ECAP Paradigm 29
Chapter 3: Method 31
3.1 Subject 31
3.2 BEDCS Software 31
3.3 Behavior Threshold 33
3.4 Objective threshold (ECAP threshold) 34
3.5 Algorithm for Finding the Transition Point 37
3.6 Apple-core ECAP Paradigm 38
Chapter 4: Result 43
Chapter 5: Discussion 48
5.1 Discussion 48
5.2 Future Work 49
References 50
Appendix 52
[1] Berenstein, C. K., Vanpoucke, F. J., Mulder, J. J., & Mens, L. H., "Electrical field imaging as a means to predict the loudness of monopolar and tripolar stimuli in cochlear implant patients.," Hearing research, vol. 270, no. 1, pp. 28-38, 2010.
[2] S. F. Cogan, "Neural stimulation and recording electrodes," Annu. Rev. Biomed. Eng., vol. 10, pp. 275-309, 2008.
[3] Vanpoucke, F. J., Zarowski, A. J., & Peeters, S. A., "Identification of the impedance model of an implanted cochlear prosthesis from intracochlear potential measurements. Biomedical Engineering.," Biomedical Engineering, IEEE Transactions on, vol. 51, no. 12, pp. 2174-2183, 2004.
[4] G. Girzon, "Investigation of current flow in the inner ear during electrical stimulation of intracochlear electrodes.," Doctoral dissertation, Massachusetts Institute of Technology, 1987.
[5] Kashio, Akinori, V. D. Tejani, R. A. Scheperle, C. J. Brown, and P. J. Abbas. , "Exploring the Source of Neural Responses of Different Latencies Obtained from Different Recording Electrodes in Cochlear Implant Users.," Audiology and Neurotology, vol. 21, no. 3, pp. 141-149, 2016.
[6] Miller, C. A., Abbas, P. J., & Brown, C. J., "An improved method of reducing stimulus artifact in the electrically evoked whole-nerve potential," Ear and hearing, vol. 21, no. 4, pp. 280-290, 2000.
[7] Baudhuin, Jacquelyn L., Michelle L. Hughes, and Jenny L. Goehring., "A Comparison of Alternating Polarity and Forward Masking Artifact-Reduction Methods to Resolve the Electrically Evoked Compound Action Potential," Ear and hearing, 2016.
[8] Botros, Andrew, and Colleen Psarros., "Neural response telemetry reconsidered: II. The influence of neural population on the ECAP recovery function and refractoriness.," Ear and hearing, vol. 31, no. 3, pp. 380-391, 2010.
[9] Hughes, M. L., & Stille, L. J., "Effect of stimulus and recording parameters on spatial spread of excitation and masking patterns obtained with the electrically evoked compound action potential in cochlear implants," Ear and hearing, vol. 31, no. 5, p. 679, 2010.
[10] Cohen, L. T., Richardson, L. M., Saunders, E., & Cowan, R. S., "Spatial spread of neural excitation in cochlear implant recipients: comparison of improved ECAP method and psychophysical forward masking," Hearing research, vol. 179, no. 1, pp. 72-87, 2003.
[11] Hughes, M. L., & Abbas, P. J., "The relation between electrophysiologic channel interaction and electrode pitch ranking in cochlear implant recipients.," The Journal of the Acoustical Society of America, vol. 119, no. 3, pp. 1527-1537, 2006.
[12] Klop, W. Martin C., Johan HM Frijns, Wim Soede, and Jeroen J. Briaire., "An objective method to measure electrode independence in cochlear implant patients with a dual-masker forward masking technique.," Hearing research, vol. 253, no. 1, pp. 3-14, 2009.
[13] "Curve Fitting Toolbox," [Online]. Available: https://www.mathworks.com/products/curvefitting/index.html.
[14] Westen, A. A., Dekker, D. M. T., Briaire, J. J., & Frijns, J. H. M., "Stimulus level effects on neural excitation and eCAP amplitude.," Hearing research, vol. 280, no. 1, pp. 166-176, 2011.
[15] van der Beek, F. B., Briaire, J. J., & Frijns, J. H., "Effects of parameter manipulations on spread of excitation measured with electrically-evoked compound action potentials.," International journal of audiology, vol. 51, no. 6, pp. 465-474, 2012.
[16] Balkany, T. J., Eshraghi, A. A., & Yang, N., "Modiolar proximity of three perimodiolar cochlear implant electrodes.," Acta oto-laryngologica, vol. 122, no. 4, pp. 363-369, 2002.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top