跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/12 06:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳昱誌
研究生(外文):Yu-chih Chen
論文名稱:應用於生醫訊號處理之類比前端積體電路設計
論文名稱(外文):Analog Front-end Integrated Circuit Design for Bio Signal Processing
指導教授:李順裕
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:128
中文關鍵詞:生醫訊號處理
外文關鍵詞:Bio Signal Processing
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1264
  • 評分評分:
  • 下載下載:232
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要分為兩部分探討,第一部分為應用於肌肉神經刺激之微刺激器設計,第二部分為應用於助聽器前端系統電路。其中第一部分微刺激器包含以下三個電路:1. Regulator 2. Controller 3. Microstimulator;而在第二部分助聽器前端系統包含下列兩個電路:1. Preamplifier 2. Lowpass Filter。
在第一部分中,微刺激器內部所需的電源以及資料將利用無線偶合(RF coupling)方式傳輸至內部電路,經由線圈感應後所接收到的為載波訊號,透過全波整流濾波後產生微小漣波的載波訊號,再利用電壓穩壓器(Voltage Regulator)將訊號穩壓至所需之規格以提供後級電路之電源。線圈感應所接收到的訊號裡同時也包含了電路所需的時脈及資料,透過曼徹斯特解碼器可將訊號中的時脈及資料萃取出來,此資料為一串列的資料因此需要一控制電路使串列訊號轉換成並列訊號以提供微刺激器使用,在刺激器的部分則使用八位元數位類比轉換器並加入雙向電流機制,已達到肌肉神經刺激之弁遄C
此外,在第二部分助聽器前端系統中,聲壓訊號將透過麥克風轉換至電壓訊號以方便後級電路處理,由於麥克風所轉換的電壓從數百μV至數個mV,因此需要ㄧ個前置放大器將訊號放大至後級電路可處理之範圍;人耳可以接收的頻率範圍大約從20Hz~20KHz,而人類說話最明顯的特徵頻帶大約是500Hz~8KHz,也因為如此系統中需要ㄧ個0Hz至10KHz之低通濾波器將語音最明顯的特徵頻帶擷取下來,而系統後端上還有類比數位轉換器(ADC)、數位訊號處理(Digital processor)、數位類比轉換器(DAC)以及喇叭;在本論文之系統研究中主要探討如何採用交換電容技術完成前置放大器(Preamplifier)以及低通濾波器(Lowpass Filter)設計。
本論文晶片使用TSMC 0.35μm 2P4M混合訊號製程實現;第一部分電路規格為 (一) Regulator將5V訊號穩壓至3V (二) 解碼器使用曼徹斯特解碼方式解碼 (三) 微刺激器刺激頻率有20Hz及2KHz兩種且電流為0mA~1mA。第二部分電路規格為 (一) Preamplifier可變增益有三種42db、54db、66db,取樣頻率為250KHz (二) Lowpass Filter取樣頻率為250KHz,截止頻率為10KHz,操作電壓為3V。第一部分已完成晶片設計與量測,並以達到微刺激器之弁遄A整體必v消耗為6.26mA,第二部分電路已完成佈局與下線,整體必v消耗為1.1mA。
This thesis has two parts including the design of microstimulator for neuromuscular stimulation and the analog front-end circuit for hearing aid system. The microstimulator includes three circuits: Regulator, Controller, Microstimulator. And the hearing aid frond-end system includes two circuits: Preamplifier, lowpass filter. In the part one, the necessary power and data of microstimulator utilize the RF coupling to be transmit to the inside circuit. By way of supply voltage to internal circuit, voltage regulator the DC signal can be obtained to provide. In addition, the clock and data can be extracted by the Manchester decoder, and the series data will be transferred to parallel for microstimulator. In order to reach the function of the muscle nerve stimulation, the microstimulator with 8-bit digital-to-analog converter is required. In the part two, the input signal through microphone will be converted to voltage signal. Because the converted voltage signal of microphone is very small in several hundred uV to several mV. So we need a preamplifier to amplify the signal to the required range of the ADC. The frequency range for the ears of people is from 20Hz to 20KHz, and the obvious characteristic frequency of human speech is 0.5KHz to 8KHz. Therefore, we need a lowpass filter to filter out of frequency of 10KHz to avoid the aliasing as the output signal of filter is processing in the ADC. The preamplifier and lowpass filter adopt switched-capacitor technique for circuit design. This chip use TSMC 0.35um 2P4M process. The feature of microstimulator is illustrated as follows: 1.Regulator can change 5V to 3V 2.The decoder adopts Manchester code technique 3.Two kinds of stimulated frequency, 20Hz and 2KHz, are adopted and the stimulated current is from 0mA to 1mA. The features of analog front-end circuit for digital hearing aid is described as follows: 1.Preamplifier variable gains 42db, 54db, 66db, and respectively sample frequency is 250KHz. 2.The sample frequency of lowpass filter is 250KHz, cutoff frequency is 10KHz,operation voltage is 3V.
摘要
Abstract
誌謝.
目錄
圖目錄
表目錄
第1章簡介
1.1節 研究動機
1.2節 研究目的及方法
1.3節 論文架構
第2章植入式微刺激器架構
2.1節 電壓穩壓器基本概念
2.1.1節 輸出電壓差(Dropout Voltage)
2.1.2節 線性調節率 ( Line Regulation )
2.1.3節 負載調節率 ( Load Regulation )
2.1.4節 電源拒斥 ( Power Supply Rejection )
2.2節 數位類比轉換器各式架構及基本概念
2.2.1節 電阻式數位類比轉換器(R-2R Ladders)
2.2.2節 電容式數位類比轉換器(Charge - Redistribution)
2.2.3節 電流式數位類比轉換器(Current Mode)
2.2.4節 位移誤差(Offset Error)
2.2.5節 增益誤差(Gain Error)
2.2.6節 微分非線性誤差(Differential Nonlinearity Error)
2.2.7節 積分非線性誤差(Integral Nonlinearity Error)
第3章助聽器系統架構
3.1節 前置放大器各式架構及基本概念
3.1.1節 儀表放大器(Instrumentation Amplifier)
3.1.2節 交換式電容放大器(Switch-capacitor Amplifier)
3.1.2.1節運算放大器(Opamps)
3.1.2.2節 開關及雙相位不重疊時脈
3.1.2.3節 交換式電容積分器
3.2節 低通濾波器架構及基本概念
3.2.1節 Cascade近似法
3.2.2節 Ladder type近似法
第4章植入式微刺激器電路設計與量測結果
4.1節 電壓穩壓器(Voltage Regulator)
4.2節 控制電路(Control Circuit)
4.2.1節 曼徹斯特解碼器(Manchester Decoder)
4.2.2節 串列轉並列電路(Series to Parallel Circuit)
4.3節 微刺激器
4.4節 晶片佈局
4.5節 量測方法
4.6節 量測結果
第5章助聽器系統前端電路設計與結果
5.1節 前置放大器
5.1.1節 交換式運算放大器
5.1.2節 共模回授電路(Common Mode Feedback Circuit)
5.1.3節 雙相位不重疊之時脈
5.1.4節 可變增益前置放大器
5.2節 交換式電容低通濾波器
5.2.1節 電感電容梯形(LC Ladder)低通濾波器
5.2.2節 低通濾波器係數移轉
5.2.3節 主動式濾波器之設計
5.2.4節 五階貝索(Bessel)低通濾波器之S-domain模型
5.2.5節 ㄧ階交換式電容濾波器
5.2.6節 五階貝索(Bessel)低通濾波器之Z-domain模型
5.2.7節 全差動架構之五階貝索交換式電容低通濾波器
5.2.7.1 節 暫態分析
5.2.7.2節頻率響應
5.3節 晶片佈局
5.4節 量測方法
5.5節 量測結果
第6章總結與未來方向
6.1節 結論
6.2節 未來方向
參考文獻
[ 1 ]Shuenn-Yuh Lee, Shyh-Chyang Lee, and Jia-Jin Jason Chen, “VLSI implementation of wireless bi-directional communication circuits for micro-stimulator”, in Proc. IEEE Int. Symp. Circuits and Systems, Vol. 5, pp. 57-60, May 2003.
[ 2 ]M. Sawan, F. Duval, S. Pourmehdi, and J. Mouine, “A new multichannel bladder stimulator”, IEEE Symposium on Computer-Based Medical Systems, pp. 190-196, 1990.
[ 3 ]J.F. Harvey and M. Swan, “Image acquisition and reduction dedicated to a visual implant”, 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Amsterdam. pp. 403-404,1996.
[ 4 ]J. R. Buckett, P. H. Peckham, G. B. Thrope, S. D. Braswell, and M. W. Keith, “A flexible, portable system for neuromuscular stimulation in the paralyzed upper extremity”, IEEE Trans. Biomed. Eng., vol. 35, no. 11, pp. 897-904, Nov. 1988.
[ 5 ]B. Ziaie, M. D. Nardin, A. R. Coghlan, K. Najafi, “A single- channel implantable microstimulator for functional neuromuscular stimulation”, IEEE Transactions on Biomedical Engineering, vol. 44, no. 10, pp. 909-920, 1997.
[ 6 ]J. G. Webster, “Medical Instrumentation Application and Design”, New York: Wiley, 1998.
[ 7 ]Robert E. Sandlin, Hearing Aid Amplification, Singular Publishing Group, San Diego, 1995.
[ 8 ]G.W. den Besten, B. Nauta, “Embedded 5V-to-3V Voltage Regilator for Supplying Digital IC’s in 3.3V CMOS Technology”, IEEE Journal of Solid-State Circuit, vol. 33, pp. 956-962, 1998.
[ 9 ]G. A. Rincon-Mora, P. E. Allen, “A Low-Voltage, Low Quiescent Current, Low Drop-Out Regulator”, IEEE Journal of Solid-State Circuit, vol. 33, pp. 36-44, 1998.
[ 10 ]S. Mortezapour, E.K.F. Lee, “A 1-V, 8-bit successive approximation ADC in standard CMOS process”, IEEE Journal of Solid-State Circuits, vol.35 Issue.4, pp.642-646, April 2000.
[ 11 ]C. J. B. Fayomi, G. W. Roberts, and M. Sawan, “A 1-V, 10-bit rail-to-rail successive approximation analog-to-digital converter in standard 0.18μm CMOS technology”, The 2001 IEEE International Symposium on Circuits and Systems, vol. 1, pp.460-463, 2001.
[ 12 ]H. Neubauer, T. Desel, H. Hauer, “A successive approximation A/D converter with 16 bit 200 kS/s in 0.6μm CMOS using self calibration and low power techniques”, The 8th IEEE International Conference on Electronics Circuits and Systems, vol. 2 , pp.859-862, 2001.
[ 13 ]H. J. Schouwenaers, D. W. J. Greeneveld, and H. A. H. Tremeer, “A low-power stereo 16-bit CMOS D/A converter for Digital Audio”, IEEE Journal of Solid-State Circuits, vol.23, no.6, pp.1290-1297, December 1988.
[ 14 ]Chi-Hung Lin; Bult, K., “A 10-b, 500-MSample/s CMOS DAC in 0.6 mm2”, IEEE Journal of Solid-State Circuits ,Volume 33, Issue 12, Dec. 1998 Page(s):1948 - 1958.
[ 15 ]J. H. Kim, K. S. Yoon, “An 8-bit CMOS 3.3-V 65-MHz digital-to-analog converter with a symmetric two-stage current cell matrix architecture” , IEEE Transactions on Circuits and Systems II-Analog and Digital Signal Processing, vol. 45, pp. 1605-1609, 1998.
[ 16 ]C. J. Yen, W. Y. Chung, M. C. Chi, “Micro-Power Low-Offset Instrumentation Amplifier IC Design for Biomedical System Applications”, IEEE Transactions on Circuit and Systems, Vol. 51, pp. 691-699, 2004.
[ 17 ]Shuenn-Yuh Lee, Shyh-Chyang Lee, and Yung-Ming Tsai, “Design of low-power low-voltage switched-opamp based bandpass filter for microstimulator”, IEEE Conference, Vol. 4, pp.282-285, 2004.
[ 18 ]Behzad Razavi , “Design of Analog CMOS Integrated Circuits”, McGraw-Hill Companies, Inc.2001, pp. 47-197.
[ 19 ]David Johns & Ken Martin, “Analog Integrated Circuit Design”, John Wiley & Sons ,Inc . 1997, pp. 221-256 & pp. 373-441.
[ 20 ]Phillip E. Allen and Douglas R. Holberg, “CMOS Analog Circuit Design”, Oxford, 2002, pp. 492-600.
[ 21 ]Rolf Schaumann & Mac E. Van Valkenburg, “Design of Analog Filters”, Oxford University Press, 2001, pp. 352-370 & pp. 658-730.
[ 22 ]K. Arabi, M. A. Sawan, “Electronic Design of a Multichannel Programmable Implant for Neuromuscular Electrical Stimulation”, IEEE Transactions on Rehabilitation Engineering, Vol. 7, pp. 204-214, 1999.
[ 23 ]Y. Fujimoto, H. Tani, M. Maruyama, H. Akada, H. Ogawa,M. Miyamoto, “A Low-Power Switched-Capacitor Variable Gain Amplifier”, IEEE Journal of Solid-State Circuit, Vol. 39, pp. 1213-1216, 2004
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top