|
[1]A.R.J. Mitchell, N.E.J. West, P. Leeson, and A.P. Banning, Cardiac catheterization and coronary intervention, OXFORD, 2007. [2]Y. Bar-Cohen, Electroactive polymer (EAP) actuators as artificial muscles: reality, potential, and challenges, 2nd ed., SPIE Press, 2004. [3]Y. Fu, H. Liu, W. Huang, S. Wang, and Z. Liang, Steerable catheters in minimally invasive vascular surgery, Tthe International Journal of Medical Robotics and Computer Assisted Surgery, 2009. [4]P. Kanagaratnam, M. Koa-Wing, D.T. Wallace, A.S. Goldenberg, N.S. Peters, and D.W. Davies, Experience of robotic catheter ablation in humans using a novel remotely steerable catheter sheath, Journal of Interventional Cardiac Electrophysiology, 21 (1), 19-26, 2008. [5]M.N. Faddis, W. Blume, J. Finney, A. Hall, J. Rauch, J. Sell, K.T. Bae, M. Talcott, and B. Lindsay, Novel, magnetically guided catheter for endocardial mapping and radiofrequency catheter ablation, Circulation, 106 (23), 2980-2985, 2002. [6]K. Ishiyama, M. Sendoh, and K.I. Arai, Magnetic micromachines for medical applications, Journal of Magnetism and Magnetic Materials, 242, 41-46, 2002. [7]S.R. Atmakuri, E.I. Lev, C. Alviar, E. Ibarra, A.E. Raizner, S.L. Solomon, and N.S. Kleiman, Initial experience with a magnetic navigation system for percutaneous coronary intervention in complex coronary artery lesions, Journal of the American College of Cardiology, 47 (3), 515-521, 2006. [8]B.D. Lindsay, Perspectives on the development of a magnetic navigation system for remote control of electrophysiology catheters, Europace, 8 (4), 231-232, 2006. [9]S. Ramcharitar, M.S. Patterson, R.J. van Geuns, M. van der Ent, G. Sianos, G.M.J.M. Welten, R.T. van Domburg, and P.W. Serruys, A randomised controlled study comparing conventional and magnetic guidewires in a two-dimensional branching tortuous phantom simulating angulated coronary vessels, Catheterization and Cardiovascular Interventions, 70 (5), 662-668, 2007. [10]S. Ramcharitar, M.S. Patterson, R.J. van Geuns, C. van Meighem, and P.W. Serruys, Technology insight: magnetic navigation in coronary interventions, Nature Clinical Practice Cardiovascular Medicine, 5 (3), 148-156, 2008. [11]M.A.E. Schneider, F.V. Hoch, H. Neuser, J. Brunn, M.L. Koller, F. Gietzen, R. Schamberger, S. Kerber, and B. Schumacher, Magnetic-guided percutaneous coronary intervention enabled by two-dimensional guidewire steering and three-dimensional virtual angioscopy: Initial experiences in daily clinical practice, Journal of Interventional Cardiology, 21 (2), 158-166, 2008. [12]Y. Haga, Y. Tanahashi, and M. Esashi. Small diameter active catheter using shape memory alloy, in Micro Electro Mechanical Systems, 1998. MEMS 98. Proceedings., The Eleventh Annual International Workshop on, 1998. [13]K.T. Park and M. Esashi, A multilink active catheter with polyimide-based integrated CMOS interface circuits, Journal of Microelectromechanical Systems, 8 (4), 349-357, 1999. [14]T. Mineta, T. Mitsui, Y. Watanabe, S. Kobayashi, Y. Haga, and M. Esashi, Batch fabricated flat meandering shape memory alloy actuator for active catheter, Sensors and Actuators A-Physical, 88 (2), 112-120, 2001. [15]T. Mineta, T. Mitsui, Y. Watanabe, S. Kobayashi, Y. Haga, and M. Esashi, An active guide wire with shape memory alloy bending actuator fabricated by room temperature process, Sensors and Actuators A-Physical, 97-8, 632-637, 2002. [16]A.T. Tung, B.H. Park, G. Niemeyer, and D.H. Liang. Laser-Machined Shape Memory Alloy Actuators for Active Catheters, IEEE-ASME Trans, 12, 439-446, 2007. [17]K. Ikuta, H. Ichikawa, K. Suzuki, and T. Yamamoto. Safety active catheter with multi-segments driven by innovative hydro-pressure micro actuators, IEEE the 16th Annual International Conference, 130-135, 2003. [18]Y. Haga, Y. Muyari, T. Mineta, T. Matsunaga, H. Akahori, and M. Esashi. Small diameter hydraulic active bending catheter using Laser processed super elastic alloy and silicone rubber tube, The 3rd Annual Intemational IEEE EMBS Special Topic, Conf. on Microtechnologies in Medicine and Biology, 245-248, 2005. [19]K. Ikuta, H. Ichikawa, K. Suzuki, and D. Yajima. Multi-degree of Freedom Hydraulic Pressure Driven Safety Active Catheter, Proceedings of the 2006 IEEE International Conference on Robotics and Automation, 4161-4166, 2006. [20]M. Ikeuchi and K. Ikuta. Development of Pressure-Driven Micro Active Catheter using Membrane Micro Emboss Following Excimer Laser Ablation (MeME-X) Process, 2009 IEEE International Conference on Robotics and Automation, 4469-4472, 2009. [21]S. Guo, T. Nakamura, T. Fukuda, K. Oguro, and M. Negoro. Micro Active Guide Wire Using ICPF Actuator-characteristic evaluation, electrical model and operability evaluation, Proceedings of the 1996 IEEE IECON 22nd International Conference on, 2, 1312 - 1317, 1996. [22]M. Shahinpoor and K.J. Kim, Ionic polymer-metal composites: I. Fundamentals, Smart Materials & Structures, 10 (4), 819-833, 2001. [23]M. Shahinpoor, Y. Bar-Cohen, J.O. Simpson, and J. Smith, Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles - a review, Smart Materials & Structures, 7 (6), R15-R30, 1998. [24]M. Shahinpoor and K.J. Kim, Ionic polymer-metal composites: IV. Industrial and medical applications, Smart Materials & Structures, 14 (1), 197-214, 2005. [25]S.W. Yeom and I.K. Oh, A biomimetic jellyfish robot based on ionic polymer metal composite actuators, Smart Materials & Structures, 18 (8), 085002, 2009. [26]S. Nemat-Nasser and Y.X. Wu, Comparative experimental study of ionic polymer-metal composites with different backbone ionomers and in various cation forms, Journal of Applied Physics, 93 (9), 5255-5267, 2003. [27]J. Wang, C.Y. Xu, M. Taya, and Y. Kuga, Mechanical stability optimization of Flemion-based composite artificial muscles by use of proper solvent, Journal of Materials Research, 21 (8), 2018-2022, 2006. [28]T.D. Gierke, G.E. Munn, and F.C. Wilson, The Morphology in Nafion Perf1uorinated Membrane Products, as Determined by Wide- and Small-Angle X-Ray Studies, Journal of Polymer Science: Polymer Physics Edition, 19, 1687-1704, 1981. [29]Y. Abe, A. Mochizuki, T. Kawashima, S. Yamashita, K. Asaka, and K. Oguro, Effect on bending behavior of counter cation species in perfluorinated sulfonate membrane-platinum composite, Polymers for Advanced Technologies, 9 (8), 520-526, 1998. [30]S. Nemat-Nasser, Micromechanics of actuation of ionic polymer-metal composites, Journal of Applied Physics, 92 (5), 2899-2915, 2002. [31]J. Wang, C.Y. Xu, M. Taya, and Y. Kuga, A Flemion-based actuator with ionic liquid as solvent, Smart Materials & Structures, 16 (2), S214-S219, 2007. [32]J.W.L. Zhou, H.Y. Chan, T.K.H. To, K.W.C. Lai, and W.J. Li, Polymer MEMS actuators for underwater micromanipulation, IEEE-ASME Transactions on Mechatronics, 9 (2), 334-342, 2004. [33]C.K. Chung, P.K. Fung, Y.Z. Hong, M.S. Ju, C.C.K. Lin, and T.C. Wu, A novel fabrication of ionic polymer-metal composites (IPMC) actuator with silver nano-powders, Sensors and Actuators B-Chemical, 117 (2), 367-375, 2006. [34]P.G. Gennes, K. Okumura, M. Shahinpoor, and K.J. Kim, Mechanoelectric effects in ionic gels, Europhysics Letters, 50 (4), 513-518, 2000. [35]M. Shahinpoor and K.J. Kim, The effect of surface-electrode resistance on the performance of ionic polymer-metal composite (IPMC) artificial muscles, Smart Materials & Structures, 9 (4), 543-551, 2000. [36]K.J. Kim and M. Shahinpoor, Ionic polymer-metal composites: II. Manufacturing techniques, Smart Materials & Structures, 12 (1), 65-79, 2003. [37]N. Fujiwara, K. Asaka, Y. Nishimura, K. Oguro, and E. Torikai, Preparation of gold-solid polymer electrolyte composites as electric stimuli-responsive materials, Chemistry of Materials, 12 (6), 1750-1754, 2000. [38]M. Shahinpoor and K.J. Kim, Novel ionic polymer-metal composites equipped with physically loaded particulate electrodes as biomimetic sensors, actuators and artificial muscles, Sensors and Actuators A-Physical, 96 (2-3), 125-132, 2002. [39]B. Akle, S. Nawshin, and D. Leo, Reliability of high strain ionomeric polymer transducers fabricated using the direct assembly process, Smart Materials & Structures, 16 (2), S256-S261, 2007. [40]S.J. Kim, I.T. Lee, H.Y. Lee, and Y.H. Kim, Performance improvement of an ionic polymer-metal composite actuator by parylene thin film coating, Smart Materials & Structures, 15 (6), 1540-1546, 2006. [41]J. Barramba, J. Silva, and P.J.C. Branco, Evaluation of dielectric gel coating for encapsulation of ionic polymer-metal composite (IPMC) actuators, Sensors and Actuators A-Physical, 140, 232-238, 2007. [42]S.J. Kim, C. Cho, and Y.H. Kim, Polymer packaging for arrayed ionic polymer-metal composites and its application to micro air vehicle control surface, Smart Materials & Structures, 18 (11), -, 2009. [43]S.D. Pandita, H.T. Lim, Y.T. Yoo, and H.C. Park, The actuation performance of ionic polymer metal composites with mixtures of ethylene glycol and hydrophobic ionic liquids as an inner solvent, Journal of the Korean Physical Society, 49 (3), 1046-1051, 2006. [44]M.D. Bennett and D.J. Leo, Ionic liquids as stable solvents for ionic polymer transducers, Sensors and Actuators A-Physical, 115 (1), 79-90, 2004. [45]B.J. Akle, M.D. Bennett, and D.J. Leo, High-strain ionomeric-ionic liquid electroactive actuators, Sensors and Actuators A-Physical, 126 (1), 173-181, 2006. [46]K. Kikuchi and S. Tsuchitani, Nafion (R)-based polymer actuators with ionic liquids as solvent incorporated at room temperature, Journal of Applied Physics, 106 (5), -, 2009. [47]J.W. Lee and Y.T. Yoo, Anion effects in imidazolium ionic liquids on the performance of IPMCs, Sensors and Actuators B-Chemical, 137 (2), 539-546, 2009. [48]M. Shahinpoor and K.J. Kim, Ionic polymer-metal composites: III. Modeling and simulation as biomimetic sensors, actuators, transducers, and artificial muscles, Smart Materials & Structures, 13 (6), 1362-1388, 2004. [49]D. Pugal, K. Jung, A. Aabloo, and K.J. Kim, Ionic polymer-metal composite mechanoelectrical transduction: review and perspectives, Polymer International, 59 (3), 279-289, 2010. [50]S. Tadokoro, S. Yamagami, T. Takamori, and K. Oguro. Modeling of Nafion–Pt composite actuators (ICPF) by ionic motion, Proc. SPIE, 3987, 92-102, 2000. [51]K. Mallavarapu and D.J. Leo, Feedback control of the bending response of ionic polymer actuators, Journal of Intelligent Material Systems and Structures, 12 (3), 143-155, 2001. [52]N. Bhat and W.J. Kim, Precision force and position control of an ionic polymer metal composite, Proceedings of the Institution of Mechanical Engineers Part I-Journal of Systems and Control Engineering, 218 (I6), 421-432, 2004. [53]S. Kang, J. Shin, S.J. Kim, H.J. Kim, and Y.H. Kim, Robust control of ionic polymer-metal composites, Smart Materials & Structures, 16, 2457-2463, 2007. [54]K. Yun and W.J. Kim, Microscale position control of an electroactive polymer using an anti-windup scheme, Smart Materials & Structures, 15 (4), 924-930, 2006. [55]H.H. Lin, B.K. Fang, M.S. Ju, and C.C.K. Lin, Control of Ionic Polymer-Metal Composites for Active Catheter Systems via Linear Parameter-Varying Approach, Journal of Intelligent Material Systems and Structures, 20 (3), 273-282, 2009. [56]R. Kanno, S. Tadokoro, T. Takamori, M. Hattori, and K. Oguro. Linear approximate dynamic model of an ICPF (ionic conducting polymer gel film) actuator, Proc. IEEE International Conference on Robotics and Automation, 219-225, 1996. [57]K.M. Newbury and D.J. Leo, Linear electromechanical model of ionic polymer transducers - Part I: Model development, Journal of Intelligent Material Systems and Structures, 14 (6), 333-342, 2003. [58]K.M. Newbury and D.J. Leo, Linear electromechanical model of ionic polymer transducers - Part II: Experimental validation, Journal of Intelligent Material Systems and Structures, 14 (6), 343-357, 2003. [59]S.X. Guo, T. Fukuda, and K. Asaka, A new type of fish-like underwater microrobot, IEEE-ASME Transactions on Mechatronics, 8 (1), 136-141, 2003. [60]K. Takagi, M. Yamamura, Z.W. Luo, M. Onishi, S. Hirano, K. Asaka, and Y. Hayakawa, Development of a rajiform swimming robot using ionic polymer artificial muscles, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vols 1-12, 1861-1866, 2006. [61]Y.F. Shan and K.K. Leang, Frequency-weighted feedforward control for dynamic compensation in ionic polymer-metal composite actuators, Smart Materials & Structures, 18 (12), 1-12, 2009. [62]J. Brufau-Penella, K. Tsiakmakis, T. Laopoulos, and M. Puig-Vidal, Model reference adaptive control for an ionic polymer metal composite in underwater applications, Smart Materials & Structures, 17 (4), 1-9, 2008. [63]N.T. Thinh, Y.S. Yang, and I.K. Oh, Adaptive neuro-fuzzy control of ionic polymer metal composite actuators, Smart Materials & Structures, 18 (6), 1-12, 2009. [64]K.M. Newbury, Characterization, Modeling, and Control of Ionic Polymer Transducers, Ph.D. Thesis, Virginia Polytechnic Institute and State University, 2002. [65]C. Bonomo, L. Fortuna, P. Giannone, and S. Graziani, A method to characterize the deformation of an IPMC sensing membrane, Sensors and Actuators A-Physical, 123-24, 146-154, 2005. [66]Z. Chen, Y.T. Shen, N. Xi, and X.B. Tan, Integrated sensing for ionic polymer-metal composite actuators using PVDF thin films, Smart Materials & Structures, 16 (2), S262-S271, 2007. [67]Z. Chen, K.Y. Kwon, and X.B. Tan, Integrated IPMC/PVDF sensory actuator and its validation in feedback control, Sensors and Actuators A-Physical, 144 (2), 231-241, 2008. [68]C. Bonorno, P. Brunetto, L. Fortuna, P. Giannone, S. Graziani, and S. Strazzeri, A tactile sensor for biomedical applications based on IPMCs, IEEE Sensors Journal, 8 (7-8), 1486-1493, 2008. [69]A.v.d. Hurk, X.J. Chew, K.C. Aw, and S.Q. Xie. A rotary joint sensor using ionic polymer metallic composite, SPIE, 2009. [70]A. Punning, A. Kruusmaa, and A. Aabloo, Surface resistance experiments with IPMC sensors and actuators, Sensors and Actuators A-Physical, 133 (1), 200-209, 2007. [71]A. Punning, M. Kruusmaa, and A. Aabloo, A self-sensing ion conducting polymer metal composite (IPMC) actuator, Sensors and Actuators A-Physical, 136 (2), 656-664, 2007. [72]G.O. Mallory and J.B. Hajdu, Electroless Plating - Fundamentals and Applications, William Andrew Publishing/Noyes, 1990. [73]T. Osaka, T. Misato, J. Sato, H. Akiya, T. Homma, M. Kato, Y. Okinaka, and O. Yoshioka, Evaluation of substrate (Ni)-catalyzed electroless gold plating process, Electrochemical Society, 147 (3), 1059-1064, 2000. [74]M. Kato, J. Sato, H. Otani, T. Homma, Y. Okinaka, T. Osaka, and O. Yoshioka, Substrate (Ni)-catalyzed electroless gold deposition from a noncyanide bath containing thiosulfate and sulfite - I. Reaction mechanism, Electrochemical Society, 149 (3), C164-C167, 2002. [75]N. Shaigan, S.N. Ashrafizadeh, M.S.H. Bafghi, and S. Rastegari, Elimination of the corrosion of Ni-P substrates during electroless gold plating, Electrochemical Society, 152 (4), C173-C178, 2005. [76]R.C. Hibbeler, Mechanics of materials, 4th ed., Prentice Hall, 572-573, 2000. [77]K.J. Astrom and B. Wittenmark, Adaptive Control, 2nd ed., Addison-Wesley, 1995. [78]L. Ljung, System identification. Theory for the user, 2nd ed., Prentice Hall PTR, 1999. [79]P. Ioannou and J. Sun, Robust Adaptive Control, Prentice Hall, 2003. [80]J. Fraden, Handbook of modern sensors, Springer, 66-46, 2003.
|