跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 09:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃文豪
研究生(外文):W. H. Huang
論文名稱:雙旋轉翼系統之模糊順滑控制
論文名稱(外文):Fuzzy Sliding Mode Control of the Twin Rotor Multi-Input Multi-Output System
指導教授:陶金旺
指導教授(外文):C. W. Tao
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:95
中文關鍵詞:雙旋轉翼系統耦合模糊順滑與模糊積分順滑雙定位控制器模糊二階順滑與模糊積分二階順滑雙定位控制器
外文關鍵詞:Twin Rotor Multi-input Multi-output System (TRMS)CouplingFuzzy Sliding and Fuzzy Integral Sliding ControllerFuzzy Second order Sliding and Fuzzy Second order Integral Sliding Controller
相關次數:
  • 被引用被引用:5
  • 點閱點閱:351
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是針對雙旋轉翼多輸入多輸出系統(TRMS),將針對定位控制的問題設計控制器,使得雙旋轉翼系統快速且穩定的到達指定位置之目標。高階非線性雙旋轉翼系統是一個不穩定且具有相互耦合之效應,對於外界干擾有強烈敏感之特性,雙旋轉翼系統常被用來試驗控制器之優劣。
然而,許多文獻為了簡化TRMS之控制器設計,系統中的耦合效應忽略不計,這將使簡化後之TRMS之整體行為模式無法滿足系統之要求。為了簡化TRMS定位控制,將此系統分解成主旋翼與尾旋翼二系統,並將耦合效應視做為系統非精確性參數。本論文將針對此TRMS提出一個新穎混合控制器,而所設計新穎混合控制器主要分為主旋轉翼與尾旋轉翼定位控制器。主旋轉翼定位控制器主要是俯仰角定位控制,而偏航角定位控制是用尾旋轉翼定位控制器來控制。
首先針對TRMS系統將設計出模糊順滑與模糊積分順滑雙定位控制器(FSFISC)來控制TRMS系統,模糊順滑與模糊積分順滑雙定位控制器(FSFISC)包含二個控制器,其分別為控制尾旋轉翼系統模糊順滑控制器(FSC),與控制主旋轉翼系統模糊積分順滑控制器(FISC)。但是由於傳統的順滑模式有抖動的現象,將降低系統定位之性能。基於此因素,研究中,將再引入二階順滑模式概念設計模糊二階順滑與模糊積分二階順滑雙定位控制器(FSSSIC),希望藉由此控制器來改善抖動的現象。最後,經由模擬結果所設計之新穎混合控制器在控制TRMS中有良好控制性能與對外界干擾有極佳的強健性。
In this paper, we investigate a control problem called the Twin Rotor Multi-input Multi-output system (TRMS). The designed TRMS is illustrated to position the TRMS in a less time period. The TRMS system is an unstable and high nonlinear coupling effect between two propellers. It is existence very sensitive to the disturbances, it is usually used to test the performance of controllers.
However, in order to simplify the designed of controller with TRMS, in the system coupling effect ignores. Therefore, after the TRMS simplify will not overhang the actions and characters of the system originally, and reduce the integral performance with TRMS. To simplify the position control, the TRMS is decomposed into a tail subsystem and a main subsystem. With the coupling effects considered as the uncertainties, the highly coupled nonlinear TRMS is decomposed. In this paper, a novel hybrid controller is presented for TRMS. This controller design can be combined with two is contains two kinds of controllers (main and tail propellers position). A main propeller and tail propellers controller is designed to position the pitch and yaw angle of TRMS.
First, a fuzzy sliding and fuzzy integral sliding controller (FSFISC) is designed to position the yaw and pitch angles of a TRMS. FSFISC consists of a fuzzy sliding controller (FSC) for the position control of the yaw angle and a fuzzy integral sliding controller (FISC) for the position control of the pitch angle. The standard (first order) sliding mode usage is, restricted due to the chattering effect caused by control switching. Based on this factor, this research gets the second order sling mode into the FSSSIC controller, and a fuzzy second order sliding and fuzzy second order integral sliding controller (FSSSIC) is designed to position of a TRMS. It also hopes the controller have eliminating effect chattering. Simulation results also indicate that the TRMS with the presented novel hybrid controller are the great performance and robust to the external disturbances.
誌 謝 Ⅰ
摘 要 Ⅱ
Abstract Ⅲ
目 錄 Ⅴ
表格索引 Ⅷ
圖片索引 Ⅸ
第一章 緒 論 1
1-1 啟發動機與研究目的……………………………………………….... 1
1-2 文獻回顧……………………………………………………………….. 3
1-3 研究步驟……………………………………………………………….. 5
1-4 論文貢獻……………………………………………………………….. 5
1-5 文章架構……………………………………………………………….. 6
1-6 重要名詞解釋………………………………………………..........7
第二章 系統動能分析 9
2-1 雙旋轉翼多輸入多輸出系統(TRMS)之描述……………………..... 9
2-2 系統之數學模型…………………………………………………….... 11
2-2-1 尾旋轉翼直流馬達輸入電壓-轉速與旋轉翼轉速-推力關係……………………………………………………………….... 11
2-2-2 水平軸在垂直面上的旋轉運動……………………………....... 12
2-2-3 垂直軸在水平面上的旋轉運動……………………………....... 15
2-2-4 系統之動態方程式………………………………………......... 17
2-3 研究問題之探討…………………………………………………….... 19
第三章 控制原理與架構 20
3-1 模糊控制理論……………………………………………………….... 20
3-1-1 模糊邏輯控制之架構………………………………………....... 21
3-2 順滑模式控制理論………………………………………………….... 29
3-2-1 順滑模式之原理……………………………………………....... 30
3-2-2 切換控制架構………………………………………………....... 32
3-2-3 積分式順滑模式控制………………………………………....... 32
3-3 高階順滑控制原理………………………………………………….... 33
3-3-1 高階順滑控制方法簡介……………………………………....... 35
第四章 模糊順滑與模糊積分順滑雙定位控制(FSFISC) 38
4-1 分解TRMS系統……………………………………………………..... 38
4-2 模糊順滑與模糊積分順滑定位控制(FSFISC) ………………….... 42
4-2-1 尾旋轉翼系統模糊順滑定位控制(FSC) …………………....... 42
4-2-2 主旋轉翼系統模糊積分順滑定位控制(FISC)….............. 47
4-3 FSC與FISC控制系統達到滑動模式之分析……………………...... 50
4-3-1 尾旋轉翼系統FSC之滑動模式分析…………………….. 50
4-3-2 主旋轉翼系統FISC之滑動模式分析……………………. 52
4-4 TRMS穩定於滑動模式下之分析…………………………………..... 55
4-4-1 尾旋轉翼系統FSC穩定於滑動模式之分析…………........... 55
4-4-2 主旋轉翼系統FISC穩定於滑動模式之分析……………. 57
4-5 控制系統之模擬…………………………………………………….... 59
4-5-1 參數設計……………………………………………………....... 59
4-5-2 模擬結果……………………………………………………....... 60
4-5-3 性能分析……………………………………………………....... 65
第五章 模糊二階順滑與模糊積分二階順滑雙定位控制(FSSSIC) 67
5-1 模糊二階順滑模式控制系統……………………………………….... 67
5-1-1 分解TRMS系統……………………………………………. 67
5-2 模糊二階順滑與模糊積分二階順滑定位控制(FSSSIC)………..... 69
5-2-1 尾旋轉翼系統模糊二階順滑定位控制(FSSC)…………........ 69
5-2-1 主旋轉翼系統模糊積分二階順滑定位控制(FSSIC)……....... 74
5-3 FSSC與FSSIC穩定度分析………………………………………...... 77
5-3-1 尾旋轉翼系統FSSC之滑動模式分析……………………. 77
5-3-2 主旋轉翼系統FSSIC之滑動模式分析…………............... 80
5-4 控制系統之模擬…………………………………………………….... 81
5-4-1 參數設計……………………………………………………....... 81
5-4-2 模擬結果……………………………………………………....... 83
5-4-3 性能分析……………………………………………………....... 85
第六章 結論與未來展望 87
6-1 控制器之性能評比………………………………………………….... 87
6-2 總結…………………………………………………………......... 88
6-3 未來展望…………………………………………………………….... 89
參考文獻
[1] L. A. Zedah, “Fuzzy Sets”, Information and Control, Vol. 8, No. 3, pp. 338-35, 1965.
[2] T. G. B. Amaral, and M. M. Crisostomo, “Automatic helicopter motion control using fuzzy logic”, IEEE Conference on, Fuzzy System, Vol. 2, pp. 860-863, December, 2001.
[3] B. U. Islam, N. Ahmed, D. L. Bhatti, S. Khan, “Controller Design Using Fuzzy Logic for a Twin Rotor MIMO System’’, IEEE Conference on, Multi Topic, pp. 264-268, December, 2003.
[4] A. Rahideh and M. H. Shaheed, “Hybrid Fuzzy-PID-based Control of a Twin Rotor MIMO System’’, IEEE Conference on, Annual, pp. 48-53, November, 2006.
[5] C. S. Liu, L. R. Chen, B. Z. Li, S. K. Chen and Z. S. Zeng, “Improvement of the Twin Rotor MIMO System Tracking and Transient Response Using Fuzzy Control Technology’’, IEEE Conference on, Industrial Electronics and Applications, pp. 1-6, May, 2006.
[6] M. Lower, B. Szlachetko, D. Krol, “Fuzzy flight control system for helicopter intelligence in hover”, IEEE Conference on, Intelligent Systems Design and Applications, pp. 370-374, September, 2005.
[7] J. P. Su, C. Y. Liang and H. M. Chen, “Robust Control of a Class of Nonlinear Systems and its Application to a Twin Rotor MIMO System”, IEEE Conference on, Industrial Technology, Vol. 2, pp. 1272-1277, December, 2002.
[8] Y. J. Huang, T. C. Kuo and H.K. Way, “Robust vertical takeoff and landing aircraft control via integral sliding mode”, IEE Proceedings on, Control Theory and Applications, Vol. 150, Issue 4, pp.383-388, July, 2003.
[9] S. M. Ahmad, A. J. Chipperfield and O. Tokhi, “Dynamic modeling and optimal control of a twin rotor MIMO system”, IEEE Conference on, National Aerospace and Electronics, pp. 391-398, October, 2000.
[10] G. R. Yu and H. T. Liu, “Sliding mode control of a two degree of freedom helicopter via linear quadratic regulator”, IEEE Conference on, Systems, Man and Cybernetics, Vol. 4, 3299 - 3304, October, 2005.
[11] T. S. Kim, J. H. Yan, Y. S. Lee and O. K. Kwo, “Twin Rotors System Modeling and Bumpless Transfer Implementation Algorithm for LQ Controll”, IEEE Conference on, International Joint, pp. 114-119, October, 2006.
[12] M. Lopez-Martinez, C. Vivas and M.G. Ortega, “A Multivariable Nonlinear H∞ Controller for a Laboratory Helicopter”, IEEE Conference on, Decision and Control, pp.4065-4070, December, 2005.
[13] A. Levant and L. Alelishvili, “Integral High-Order Sliding Modes”, IEEE Trans. on, Automatic Control, Vol. 52, No. 79, pp. 1278-1782, July, 2007.
[14] G. Bartolini, A. Ferrara and E. Usani, “Chattering avoidance by second-order sliding mode control ”, IEEE Trans. on, Automatic Control, Vol. 43, No. 2, pp. 241-246, February, 1998.
[15] W. Y. Wang, T. T. Lee and H. C. Huang, “Evolutionary Design of PID Controller for Twin Rotor Multi-Input Multi-Output System’’, IEEE Congress on, Intelligent Control and Automation, Vol. 2, pp. 913-917, June, 2002.
[16] J. G. Juang, W. K. Liu and C. Y. Tsai, “Intelligent control scheme for twin rotor MIMO system”, IEEE Conference on, Mechatronics, pp.102-107, July, 2005.
[17] J. G. Juang, K. T. Tu and W. K. Liu, “Optimal Fuzzy Switching Grey Prediction with RGA for TRMS Control”, IEEE Conference on, Systems, Man, and Cybernetics, Vol. 1, pp. 681-686, October, 2006.
[18] A. Levant, “Sliding order and sliding accuracy in sliding mode control”, International Journal of Control, Vol. 58. pp. 1247-1263, 1993.
[19] G. Bartolini, A. Ferrara and E. Usai , “Output tracking control of uncertain nonlinear second order system”, Automatica, Vol. 33, pp. 2203-2212, 1997.
[20] G. Bartolini, A. Pisano, E. Punta and E. Usia, “A survey of applications of second order sliding mode control to mechanical system”, International Journal of Control, Vol. 76. pp. 875-892, 2003.
[21] J. Y. Hung, W. Gao, and J. C. Hung, “Variable structure control: A survey”, IEEE Trans. Ind. Electron., vol. 40, pp. 2–21, Feb. 1993.
[22] C. W. Tao, M. L. Chan, and T. T. Lee, “Adaptive Fuzzy Sliding Mode Controller for Linear Systems with Mismatched Time-Varying Uncertainties”, IEEE Trans. on Systems, Vol. 33, No. 2, pp.283-294, April, 2003.
[23] C. W. Tao, J. S. Taur, and M. L. Chan, “Adaptive Fuzzy Terminal Sliding Mode Controller for Linear Systems with Mismatched Time-Varying Uncertainties”, IEEE Trans. Systems Man Cybernet., Vol. 34, No. 1, February, 2004.
[24] M. C. Pai and A. Sinha, “Sliding Mode Output Feedback Control of Time-Varying Mismatched Uncertain Systems”, IEEE Conference on, Systems, Man, and Cybernetics, Vol. 2, pp. 1355-1360, October, 2006.
[25] K. K. Shyu, Y. W. Tsai and C. K. Lai “Sliding mode control for mismatched uncertain systems”, IEE Trans. Electronics Letters, Vol. 34, No. 24, pp. 2359-2360, November, 1998.
[26] Feedback Matlab Based Control Products Manual. Feedback Instruments Ltd., 1997.
[27] 劉家昇,「雙旋轉翼直昇機模型LQR控制」,國立台灣科技大學電機工程系碩士班碩士論文,民國九十四年七月。
[28] 黃明德,「基因演算法與PID控制法於非線性雙旋轉翼多輸入多輸出系統之應用」,國立海洋大學航運技術研究所碩士班碩士論文,民國九十一年六月。
[29] 孫宗瀛,楊英魁,“Fuzzy 控制理論實作與應用”,全華科技圖書出版社,1994。
[30] 王文俊,“認識 Fuzzy-第二版”,全華科技圖書出版社,Oct. 1997。
[31] 陳永平,張浚林,“可變結構控制設計”,全華科技圖書出版社,2002。
[32] 陳原許,「倒單擺系統之模糊順滑控制」,國立宜蘭大學電機工程學系碩士班碩士論文,民國九十六年五月。
[33] 趙清峰,“進階自動控制設計-使用 MATLAB 程式語言”,全華科技圖書出版社,2000。
[34] 余克維,“控制系統分析與設計-使用 Matlab”,新文京開發出版,Jun. 2004。
[35] 張智星,“MATLAB-程式設計與應用”,清蔚科技出版,2004。
[36] 洪維恩,“Matlab 7.0”,旗標出版社,2005。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top