參考文獻
陳香吟 (2005)。中樞疲勞機制中支鏈胺基酸的角色。運動生理暨體能學報,2,45-53。葉姿劭 (2008)。力竭性運動後補充雞精對生理疲勞及心理情緒之影響。國立台
灣體育大學。運動科學研究碩士論文。桃園縣。
劉宗翰、張振崗 (2008)。支鏈胺基酸對運動誘發之中樞疲勞與蛋白質代謝之影響。大專體育,98,147-152。Adams M. R., Mccredie R., Jessup W., Robinson J., Sullivan D., & Celermajer D. S. (1997). Oral l-arginine improves endothelium-dependent dilatation and reduces monocyte adhesion to endothelial cells in young men with coronary artery disease. Journal of Atherosclerosis Research, 129(2), 261-269.
Apostol, A. T., & Tayek, J. A. (2003). A decrease in glucose production is associated with an increase in plasma citrulline response to oral arginine in normal volunteers. Metabolism. 53(11), 1512-1516.
Blomstrand, E. (2001). Amino acids and central fatigue. Journal of Amino Acids, 20, 25-34.
Bode-Boger S. M., Muke J., Surdacki A., Brabant G., Boger R. H., & Frolich J. C. (2003). Oral l-arginine improves endothelial function in healthy individuals older than 70 years. Journal of Vascular Medicine, 8(2), 77-81.
Bolster, D. R., Jefferson, L. S., & Kimball, S. R. (2004). Regulation of protein synthesis associated with skeletal muscle hypertrophy by insulin-, amino acid- and exerciseinduced signalling. The Proceedings of the Nutrition Society, 63, 351–356.
Borg, G. V. (1962). Physical performance and perceived exertion. Lund, Swden: Gleerup.
Colombani P. C., Bitzi R., Frey-Rindova P., Frey W., Arnold M., & Langhans W., et al. (1999). Chronic arginine aspartate supplementation in runners reduces total plasma amino acid level at rest and during a marathon run. European Journal of Nutrition, 38(6), 263-270.
Coombes, J. S., & Mcnaughton, L. R. (2000). Effects of branched-chain amino acid supplementation on serum creatine kinase and lactate dehydrogenase after prolonged exercise. Journal of Sports Medicine and Physical Fitness, 40, 240-246.
Coppack, S.W., Jensen, M.D., & Miles, J.M. (1994). In vivo regulation of lipolysis in humans. Journal of Lipid Research, 35, 177-193.
Denis C., Dormois D., Linossier M. T., Eychenne J. L., Hauseux P., & Lacour J. R. (1991). Effect of arginine aspartate on the exercise-induced hyperammoniemia in humans: a two period cross-over trial. Archives Internationales de Physiologie, de Biochimie et de Biophysique, 99(1), 123-127.
Doutreleau S., Mettauer B., Piquard F., Rouyer O., Schaefer A., & Lonsdorfer J., et al. (2006). Chronic L-arginine supplementation enhances endurance exercise tolerance in heart failure patients. International Journal of Sports Medicine, 27(7), 567-572.
Doutreleau S., Mettauer B., Piquard F., Schaefer A., Lonsdorfer E., & Richard R., et al. (2005). Chronic but not acute oral L-arginine supplementation delays the ventilatory threshold during exercise in heart failure patients. Canadian Journal of Applied Physiology, 30(4), 419-432.
Endemann D. H. & Schiffrin E. L. (2004). Endothelial dysfunction. Journal of the American Society of Nephrology, 15(8), 1983-1992.
Eto B., Peres, G., & Le Moel, G. (1994). Effects of an ingested glutamate arginine salt on ammonemia during and after long lasting cycling. Archives Internationales de Physiologie, de Biochimie et de Biophysique, 102(3), 161-162.
Gleeson, M. (2005). Interrelationship between physical activity and branched-chain amino acids. Journal of Nutrition, 135, 1591-1595.
Greer, B. K., Woodard, J. L., White, J. P., Arguello, E. M., & Haymes, E. M. (2007). Branched-chain amino acid supplementation and indicators of muscle damage after endurance exercise. International Journal of Sport Nutrition and Exercise Metabolism. 17(6), 595-607.
Gropper, S. S., Smith, J. L., & Groff, J. L. (2004). Advanced nutrition and human metabolism. (4th ed.). Belmont, CA: Thomson Learning. 230-251.
Harper, A. E., Miller, R. H., & Block, K. P. (1984). Branched-chain amino acid metabolism. Annual Review of Nutrition, 4, 409-454.
Kobayashi, R., Murakami, T., Obayashi, M., Nakai, N., Jaskiewicz, J., & Fujiwara,
Y, et al. (2002). Clofibric acid stimulates branched-chain amino acid
catabolism by three mechanisms. Archives of Biochemistry and Biophysics. 407, 231–240.
Layman, D. K., & Baum, J. I. (2004). Dietary protein impact on glycemic control during weight loss. Journal of Nutrition, 134, 968-973.
MacLean, D. A., Graham, T. E., & Saltin, B. (1994). Branched-chain amino acids augment ammonia metabolism while attenuating protein breakdown during exercise. American Journal of Physiology, 267, 1010–1022.
Masashi, M., Jinichiro, K., Kentaro, K.., & Mitsuru, H. (2009). Branched-chain amino acid-containing dipeptides, identified from whey protein hydrolysates, stimulate glucose uptake rate in L6 myotubes and isolated skeletal muscles. Journal of Nutritional Science and Vitaminology, 55, 81-86.
Matsumoto, K., Mizuno, M., Mizuno, T., Dilling-Hansen, B., Lahoz, A., Bertelsen, V., et al. (2007). Branched-chain amino acids and arginine supplementation attenuates skeletal muscle proteolysis induced by moderate exercise in young individuals. International Journal of Sports Medicine, 28(6), 531-538.
Mordier, S., Deval, C., Bechet, D., Tassa, A., & Ferrara, M. (2000). Leucine limitation induces autophagy and activation of lysosome-dependent proteolysis in C2C12 myotubes through a mammalian target of rapamycin-independent signaling pathway. The Journal of Biological Chemistry, 275, 29900–29906.
Mougios,V. (2007). Reference intervals for serum creatine kinase in athletes. British
Journal of Sports Medicine, 41(10), 674-678.
Newsholme, E. A., Acworth, I. N., & Blomstrand, E. (1987). Amino acids, brain neurotransmitters and a functional link between muscle and brain that is
important in sustained exercise. In G. Benzi (Ed.), Advances in Myochemistry, (pp.127–138). London, UK: John Libby Eurotext.
Newsholme, E. A., & Blomstrand, E. (2006). Branched-chain amino acids and central fatigue. Journal of Nutrition, 136 (1 Suppl).
Rennie, M. J. (1996). Influence of exercise on protein and amino acid metabolism. New York: Oxford University Press.
Rennie, M. J., Bohe, J., Smith, K., Wackerhage, H., & Greenhaff, P. (2006). Branched-chain amino acids as fuels and anabolic signals in human muscle. Journal of Nutrition, 136 (1 Suppl), 264-268.
Riazi, R., Wykes, L. J., Ball, R. O., & Pencharz, P. B. (2003). The total branched-chain amino acid requirement in young healthy adult men determined by indicator amino acid oxidation by use of l-[1-13C] phenylalanine. Journal of Nutrition, 133, 1383–1389.
Saitoh, S., Yoshitake ,Y., & Suzuki, M. (1983). Enhanced glycogen repletion in liver and skeletal muscle with citrate orally fed after exhaustive treadmill running and swimming. Journal of Nutritional Science and Vitaminology. 29(1), 45-52.
Schaefer, A., Piquard, F., Geny, B., Doutreleau, S., Lampert, E., Mettauer, B., & Lonsdorfer, J. (2002). L-arginine reduces exercise-induced increase in plasma lactate and ammonia. International Journal of Sports Medicine, 23(6), 403-407.
Schlaich, M. P., Jacobi J., John S., Delles C., Fleischmann I., & Schmieder R. E. (2000). Is l-arginine infusion an adequate tool to assess endothelium-dependent vasodilation of the human renal vasculature? Clinical Science, 99(4), 293-302.
Soeters, P. B., Hallemeesch, M. M., Bruins, M.J., van Eijk, H. M., & Deutz, N. E. (2002). Quantitative in vivo assessment of arginine utilization and nitric oxide production in endotoxemia. American Journal of Surgery. 183(4), 480-488.
Shimomura, Y., Yamamoto, Y., Bajotto, G., Sato, J., Murakami,T., & Shimomura, N. et al. (2006). Nutraceutical effects of branched-chain amino acids on skeletal muscle. Journal of Nutrition, 136, 529-532.
Tsai, P. H., Tang, T. K., Juang, C. L., Chen, W. C., Chi, C. A., & Hsu, M. C. (2009). Effects of arginine supplementation on post-exercise metabolic responses. The Chinese Journal of Physiology. 52(3), 136-142.
Tsuei B. J., Bernard A. C., Barksdale A. R., Rockich A. K., Meier C. F., & Kearney P. A. (2005). Supplemental enteral arginine is metabolized to ornithine in injured patients. Journal of Surgical Research, 123(1), 17-24.
Wagenmakers , A. J. (1998). Protein and amino acid metabolism in human muscle. Advances in Experimental Medicine and Biology. 26, 287-314.
Yamamoto, T. & Newsholme, E. A. (2000). Diminished central fatigue by inhibition of the L-system transporter for the uptake of tryptophan. Brain Research Bulletin, 52(1), 35-38.