跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.188) 您好!臺灣時間:2025/12/01 17:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱震華
研究生(外文):Chen-HuaChiu
論文名稱:拓樸與尺寸最佳化於自適性撓性夾爪機械利益最大化設計之研究
論文名稱(外文):Topology Optimization and Size Optimization for Design of an Adaptive Compliant Gripper with Maximum Mechanical Advantage
指導教授:劉至行
指導教授(外文):Chih-Hsing Liu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:163
中文關鍵詞:撓性夾爪結構最佳化拓樸最佳化尺寸最佳化機械利益
外文關鍵詞:compliant mechanismstructural optimizationtopology optimizationsize optimizationmechanical advantage
相關次數:
  • 被引用被引用:5
  • 點閱點閱:703
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用拓樸與尺寸最佳化演算法來設計機械利益最大化之自適性撓性夾爪。自適性撓性夾爪是一種可適應不同外形的被夾取物體之撓性機構。機械利益則是輸出力與輸入力之比值,機械利益越高表示機構在相同輸入力的情況下可提供較高的輸出力。在拓樸最佳化設計部分,本研究使用反向型雙向演進式拓樸最佳化方法,此方法可以快速且穩定的設計低體積率之撓性機構,其目標函數採用複合應變能函數,此方法可同時以撓性機構的機械利益與幾何利益(輸出位移與輸入位移之比值)為目標進行設計。在尺寸最佳化設計部分,本研究使用增廣拉格朗日乘數法搭配單形法,此方法可使用少量運算次數解決多變數多限制式的最佳化問題,此方法以機械利益最大化為目標函數。本研究依據各種不同的設計組合與評估標準,最終挑選出三組夾爪(ACGS1、ACGS2與ACGS3夾爪)進行試做驗證。並進行了機械利益實驗、幾何利益實驗、自適性實驗、夾持實驗與負載實驗,並與另外二組現有的自適性撓性夾爪相比較,並定義一夾爪效能函數做為判斷夾爪性能之準則。綜合前述各項實驗結果顯示本研究所設計之ACGS2夾爪是五個夾爪之中效能最優良的夾爪,此夾爪具備較快的夾合速度、良好的自適性,與充足的夾持力。此自適性撓性夾爪可搭配工業機器人或機器手臂使用,可有效的降低成本、促進產業自動化並增進生產效能。
This study presents a systematic optimal design procedure to develop an adaptive compliant gripper (ACG) for grasping objects with various sizes and shapes. A soft-add topology optimization algorithm, reversed bi-directional evolutionary structural optimization (RBESO) considering both geometric advantage and mechanical advantage of the analyzed compliant mechanism, is developed to synthesize the optimal layout of the ACG with better computational efficiency. One special characteristic of the proposed method is that the elements are equivalent to be numerically added into the analysis domain. As the target volume fraction in topology optimization for the analyzed compliant mechanism is usually below 30% of the initial design domain, the traditional methods which remove elements from 100% become inefficient. A size optimization procedure by using a mixed method combing Augmented Lagrange Multiplier (ALM) method and Simplex method is also proposed to maximize the mechanical advantage of the ACG. After the optimal design is obtained, both finite element analysis and experimental tests are carried out to analyze the design. Five ACGs are prototyped using silicon rubber. A performance index for grasping objects with ACGs has also been proposed to evaluate the grasping performance of various designs. The results show the developed ACGS2 gripper is with the highest performance index, which represents the gripper is with better adaptability, faster response, higher payload and stability in overall. The outcomes of this study provide numerical methods for design and analysis of adaptive compliant mechanisms with large deformation and contact nonlinearity, as well as to develop an innovative compliant gripper for grasping objects with geometric inconsistency.
摘要 i
ABSTRACT ii
誌謝 x
目錄 xi
表目錄 xiv
圖目錄 xvi
符號說明 xxi
第一章 緒論 1
1-1 自適性撓性夾爪簡介 1
1-2 結構最佳化文獻回顧 4
1-2-1 拓樸最佳化文獻回顧 6
1-2-2 尺寸最佳化文獻回顧 9
1-3 研究目的 10
1-4 本文架構 11
第二章 結構最佳化理論 12
2-1 前言 12
2-2 拓樸最佳化理論介紹 12
2-2-1 設計區間、邊界條件與有限元素分析 14
2-2-2 元素靈敏度 15
2-2-3 二分法與收斂準則 18
2-3 拓樸最佳化設計目標函數 21
2-3-1 對應單一輸出之目標函數介紹 22
2-3-2 對應雙輸出之目標函數介紹 28
2-3-3 對應三輸出之目標函數介紹 32
2-4 尺寸最佳化理論介紹 36
2-4-1 尺寸最佳化目標函數 38
2-4-2 增廣拉格朗日乘數法 39
2-4-3 單形法 42
2-5 本章小結 47
第三章 自適性撓性夾爪設計與分析 48
3-1 前言 48
3-2 撓性機構拓樸最佳化範例 49
3-2-1 範例一:反向機構(Inverter mechanism) 50
3-2-2 範例二:夾合機構(Crunching mechanism) 54
3-3 自適性撓性夾爪拓樸最佳化設計 58
3-3-1 邊界條件介紹 59
3-3-2 參數測試 62
3-3-3 各邊界條件之拓樸設計 68
3-3-4 梯型設計區間與其拓樸設計 78
3-4 拓樸最佳化結果與分析 89
3-4-1 挑選準則與挑選結果 89
3-4-2 分析模擬與拓樸最佳化結果 92
3-5 尺寸最佳化設計 99
3-5-1 參數模型設計 101
3-5-2 尺寸最佳化設計條件與過程 113
3-6 尺寸最佳化結果與分析 115
3-7 本章小結 129
第四章 試做與驗證 131
4-1 前言 131
4-2 自適性撓性夾爪試做 132
4-3 機械利益驗證與幾何利益實驗 136
4-4 自適性與夾持實驗 140
4-4-1 凹物與凸物夾取實驗 140
4-4-2 實際物體夾持實驗 144
4-4-3 負載實驗 150
4-5 實驗結果整理與比較 152
4-6 本章小結 155
第五章 結論與未來工作 156
5-1 結論 156
5-2 未來工作 157
參考文獻 159
[1]S. Perai, M. I. Z. Ridzwan, and A. H. Kadarman, Methodology of compliant mechanisms and its current developments in applications: a review, American Journal of Applied Sciences, vol. 4, pp. 160-167, 2007.
[2]Y. Li, Topology optimization of compliant mechanisms based on the BESO method, RMIT University, 2014.
[3]D. Aukes, B. Heyneman, V. Duchaine, and M. R. Cutkosky, Varying spring preloads to select grasp strategies in an adaptive hand, in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2011, pp. 1373-1379.
[4]L. Birglen, The kinematic preshaping of triggered self-adaptive linkage-driven robotic fingers, in IFToMM/ASME International Workshop on Underactuated Grasping (UG2010), Montr´eal, Canada, 2011.
[5]A. Grzesiak, R. Becker, and A. Verl, The bionic handling assistant: a success story of additive manufacturing, Assembly Automation, vol. 31, pp. 329-333, 2011.
[6]D. Petković and N. D. Pavlović, A new principle of adaptive compliant gripper, in Mechanisms, Transmissions and Applications, ed: Springer, 2012, pp. 143-150.
[7]M. Ciocarlie and P. Allen, Data-driven optimization for underactuated robotic hands, in 2010 IEEE International Conference on Robotics and Automation (ICRA), Anchorage, Alaska, USA, 2010, pp. 1292-1299.
[8]S. Montambault and C. m. M. Gosselin, Analysis of underactuated mechanical grippers, Journal of Mechanical Design, vol. 123, pp. 367-374, 2001.
[9]P. Steutel, Design of a fully compliant under-actuated finger with a monolithic structure and distributed compliance, TU Delft, Delft University of Technology, 2010.
[10]D. Petković, N. D. Pavlović, S. Shamshirband, and N. Badrul Anuar, Development of a new type of passively adaptive compliant gripper, Industrial Robot: An International Journal, vol. 40, pp. 610-623, 2013.
[11]J. Stuckler and S. Behnke, Adaptive tool-use strategies for anthropomorphic service robots, in 14th IEEE-RAS International Conference on Humanoid Robots (Humanoids), Madrid, Spain, 2014, pp. 755-760.
[12]M. Y. Wang, Mechanical and geometric advantages in compliant mechanism optimization, Frontiers of Mechanical Engineering in China, vol. 4, pp. 229-241, 2009.
[13]B. Salamon and A. Midha, An introduction to mechanical advantage in compliant mechanisms, Journal of Mechanical Design, vol. 120, pp. 311-315, 1998.
[14]S. Rahmatalla and C. C. Swan, Sparse monolithic compliant mechanisms using continuum structural topology optimization, International Journal for Numerical Methods in Engineering, vol. 62, pp. 1579-1605, 2005.
[15]O. Sigmund, On the design of compliant mechanisms using topology optimization, Journal of Structural Mechanics, vol. 25, pp. 493-524, 1997.
[16]R. Kumar and G. Ananthasuresh, A Study of Mechanical Advantage in Compliant Mechanisms, in 1st International and 16th National Conference on Machines and Mechanisms (iNaCoMM2013), IIT Roorkee, India, 2013.
[17]L. L. Howell, S. P. Magleby, and B. M. Olsen, Handbook of compliant mechanisms, John Wiley & Sons, 2013.
[18]M. P. Bendsøe and O. Sigmund, Topology optimization: theory, methods, and applications, Springer Science & Business Media, 2013.
[19]S. R. Deepak, M. Dinesh, D. K. Sahu, and G. Ananthasuresh, A comparative study of the formulations and benchmark problems for the topology optimization of compliant mechanisms, Journal of Mechanisms and Robotics, vol. 1, p. 011003, 2009.
[20]A. Milojević, S. Linß, L. Zentner, N. T. Pavlović, N. D. Pavlović, T. Petrović, M. Milošević, M. Tomić, Optimal Design of Adaptive Compliant Mechanisms with Inherent Actuators Comparing Discrete Structures with Continuum Structures Incorporating Flexure Hinges, in 58th Ilmenau Scientific Colloquium, Technische Universität Ilmenau, 2014.
[21]O. Sigmund, A 99 line topology optimization code written in Matlab, Structural and multidisciplinary optimization, vol. 21, pp. 120-127, 2001.
[22]M. Y. Wang, S. Chen, X. Wang, and Y. Mei, Design of multimaterial compliant mechanisms using level-set methods, Journal of Mechanical Design, vol. 127, pp. 941-956, 2005.
[23]Z. Luo, L. Tong, M. Y. Wang, and S. Wang, Shape and topology optimization of compliant mechanisms using a parameterization level set method, Journal of Computational Physics, vol. 227, pp. 680-705, 2007.
[24]S. Nishiwaki, M. I. Frecker, S. Min, and N. Kikuchi, Topology optimization of compliant mechanisms using the homogenization method, International Journal for Numerical Methods in Engineering, vol. 42, pp. 535-559, 1998.
[25]R. Ansola, E. Veguería, J. Canales, and J. A. Tárrago, A simple evolutionary topology optimization procedure for compliant mechanism design, Finite Elements in Analysis and Design, vol. 44, pp. 53-62, 2007.
[26]R. Ansola, E. Veguería, A. Maturana, and J. Canales, 3D compliant mechanisms synthesis by a finite element addition procedure, Finite Elements in Analysis and Design, vol. 46, pp. 760-769, 2010.
[27]K. Liu and A. Tovar, An efficient 3D topology optimization code written in Matlab, Structural and Multidisciplinary Optimization, vol. 50, pp. 1175-1196, 2014.
[28]I. G. Jang, I. Y. Kim, and B. M. Kwak, Analogy of strain energy density based bone-remodeling algorithm and structural topology optimization, Journal of biomechanical engineering, vol. 131, p. 011012, 2009.
[29]F. A. Gomes and T. A. Senne, An algorithm for the topology optimization of geometrically nonlinear structures, International Journal for Numerical Methods in Engineering, vol. 99, pp. 391-409, 2014.
[30]S. Chen and M. Y. Wang, Designing distributed compliant mechanisms with characteristic stiffness, in ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2007, pp. 33-45.
[31]T. Buhl, C. B. Pedersen, and O. Sigmund, Stiffness design of geometrically nonlinear structures using topology optimization, Structural and Multidisciplinary Optimization, vol. 19, pp. 93-104, 2000.
[32]T. E. Bruns and D. A. Tortorelli, Topology optimization of non-linear elastic structures and compliant mechanisms, Computer Methods in Applied Mechanics and Engineering, vol. 190, pp. 3443-3459, 2001.
[33]H. C. Gea and J. Luo, Topology optimization of structures with geometrical nonlinearities, Computers & Structures, vol. 79, pp. 1977-1985, 2001.
[34]D. Jung and H. C. Gea, Topology optimization of nonlinear structures, Finite Elements in Analysis and Design, vol. 40, pp. 1417-1427, 2004.
[35]O. Querin, G. Steven, and Y. Xie, Evolutionary structural optimisation using an additive algorithm, Finite Elements in Analysis and Design, vol. 34, pp. 291-308, 2000.
[36]X. Yang, Y. Xie, G. Steven, and O. Querin, Bidirectional evolutionary method for stiffness optimization, AIAA journal, vol. 37, pp. 1483-1488, 1999.
[37]Y. Li, X. D. Huang, Y. M. Xie, and S. W. Zhou, Bi-directional evolutionary structural optimization for design of compliant mechanisms, in Key Engineering Materials, 2013, pp. 373-376.
[38]黃國豐,劉至行, 反向型雙向演進式拓樸最佳化方法於撓性機構設計之研究,中國機械工程學會104年度年會暨第32屆全國學術研討會, 台灣高雄市, 2015.
[39]A. Krishnakumar and K. Suresh, Hinge-Free Compliant Mechanism Design Via the Topological Level-Set, Journal of Mechanical Design, vol. 137, p. 031406, 2015.
[40]G. N. Vanderplaats, Numerical optimization techniques for engineering design: with applications vol. 1, McGraw-Hill New York, 1984.
[41]J. Vallejo, R. Avil, A. Hernández, and E. Amezua, Nonlinear optimization of planar linkages for kinematic syntheses, Mechanism and Machine Theory, vol. 30, pp. 501-518, 1995.
[42]J. Hetrick and S. Kota, An energy formulation for parametric size and shape optimization of compliant mechanisms, Journal of Mechanical Design, vol. 121, pp. 229-234, 1999.
[43]B. D. Jensen, M. B. Parkinson, K. Kurabayashi, L. L. Howell, and M. S. Baker, Design optimization of a fully-compliant bistable micro-mechanism, in 2001 ASME International Mechanical Enigineering Congress and Exposition, New York, NY, 2001, p. 2125.
[44]P. Fourie and A. A. Groenwold, The particle swarm optimization algorithm in size and shape optimization, Structural and Multidisciplinary Optimization, vol. 23, pp. 259-267, 2002.
[45]A. Kaveh and S. Talatahari, Size optimization of space trusses using Big Bang–Big Crunch algorithm, Computers & structures, vol. 87, pp. 1129-1140, 2009.
[46]K. Chung, K.-S. Lee, and W.-S. Kim, Optimization of the design factors for thermal performance of a parallel-flow heat exchanger, International Journal of Heat and Mass Transfer, vol. 45, pp. 4773-4780, 2002.
[47]Q. Xiong and A. Jutan, Continuous optimization using a dynamic simplex method, Chemical Engineering Science, vol. 58, pp. 3817-3828, 2003.
[48]Y. M. Xie and G. P. Steven, Basic evolutionary structural optimization, Springer, 1997.
[49]X. Huang and Y. Xie, Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method, Finite Elements in Analysis and Design, vol. 43, pp. 1039-1049, 2007.
[50]X. Huang and Y.-M. Xie, A further review of ESO type methods for topology optimization, Structural and Multidisciplinary Optimization, vol. 41, pp. 671-683, 2010.
[51]X. Huang and M. Xie, Evolutionary topology optimization of continuum structures: methods and applications, John Wiley & Sons, 2010.
[52]H. Kim, O. Querin, and G. Steven, On the development of structural optimisation and its relevance in engineering design, Design studies, vol. 23, pp. 85-102, 2002.
[53]G. N. Vanderplaats, Multidiscipline Design Optimization, Vanderplaats Research & Development, Incorporated, 2007.
[54]S. S. Rao, Engineering optimization: theory and practice, John Wiley & Sons, 2009.
[55]D. Petković, N. Pavlović, and N. Pavlović, Development and Design of A New Type of Passively Adaptive Compliant Gripper, in XI International SAUM Conference on Systems, Automatic Control and Measurements, Niš, Serbia, 2012, pp. 109-112.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊