|
[1]S. Perai, M. I. Z. Ridzwan, and A. H. Kadarman, Methodology of compliant mechanisms and its current developments in applications: a review, American Journal of Applied Sciences, vol. 4, pp. 160-167, 2007. [2]Y. Li, Topology optimization of compliant mechanisms based on the BESO method, RMIT University, 2014. [3]D. Aukes, B. Heyneman, V. Duchaine, and M. R. Cutkosky, Varying spring preloads to select grasp strategies in an adaptive hand, in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2011, pp. 1373-1379. [4]L. Birglen, The kinematic preshaping of triggered self-adaptive linkage-driven robotic fingers, in IFToMM/ASME International Workshop on Underactuated Grasping (UG2010), Montr´eal, Canada, 2011. [5]A. Grzesiak, R. Becker, and A. Verl, The bionic handling assistant: a success story of additive manufacturing, Assembly Automation, vol. 31, pp. 329-333, 2011. [6]D. Petković and N. D. Pavlović, A new principle of adaptive compliant gripper, in Mechanisms, Transmissions and Applications, ed: Springer, 2012, pp. 143-150. [7]M. Ciocarlie and P. Allen, Data-driven optimization for underactuated robotic hands, in 2010 IEEE International Conference on Robotics and Automation (ICRA), Anchorage, Alaska, USA, 2010, pp. 1292-1299. [8]S. Montambault and C. m. M. Gosselin, Analysis of underactuated mechanical grippers, Journal of Mechanical Design, vol. 123, pp. 367-374, 2001. [9]P. Steutel, Design of a fully compliant under-actuated finger with a monolithic structure and distributed compliance, TU Delft, Delft University of Technology, 2010. [10]D. Petković, N. D. Pavlović, S. Shamshirband, and N. Badrul Anuar, Development of a new type of passively adaptive compliant gripper, Industrial Robot: An International Journal, vol. 40, pp. 610-623, 2013. [11]J. Stuckler and S. Behnke, Adaptive tool-use strategies for anthropomorphic service robots, in 14th IEEE-RAS International Conference on Humanoid Robots (Humanoids), Madrid, Spain, 2014, pp. 755-760. [12]M. Y. Wang, Mechanical and geometric advantages in compliant mechanism optimization, Frontiers of Mechanical Engineering in China, vol. 4, pp. 229-241, 2009. [13]B. Salamon and A. Midha, An introduction to mechanical advantage in compliant mechanisms, Journal of Mechanical Design, vol. 120, pp. 311-315, 1998. [14]S. Rahmatalla and C. C. Swan, Sparse monolithic compliant mechanisms using continuum structural topology optimization, International Journal for Numerical Methods in Engineering, vol. 62, pp. 1579-1605, 2005. [15]O. Sigmund, On the design of compliant mechanisms using topology optimization, Journal of Structural Mechanics, vol. 25, pp. 493-524, 1997. [16]R. Kumar and G. Ananthasuresh, A Study of Mechanical Advantage in Compliant Mechanisms, in 1st International and 16th National Conference on Machines and Mechanisms (iNaCoMM2013), IIT Roorkee, India, 2013. [17]L. L. Howell, S. P. Magleby, and B. M. Olsen, Handbook of compliant mechanisms, John Wiley & Sons, 2013. [18]M. P. Bendsøe and O. Sigmund, Topology optimization: theory, methods, and applications, Springer Science & Business Media, 2013. [19]S. R. Deepak, M. Dinesh, D. K. Sahu, and G. Ananthasuresh, A comparative study of the formulations and benchmark problems for the topology optimization of compliant mechanisms, Journal of Mechanisms and Robotics, vol. 1, p. 011003, 2009. [20]A. Milojević, S. Linß, L. Zentner, N. T. Pavlović, N. D. Pavlović, T. Petrović, M. Milošević, M. Tomić, Optimal Design of Adaptive Compliant Mechanisms with Inherent Actuators Comparing Discrete Structures with Continuum Structures Incorporating Flexure Hinges, in 58th Ilmenau Scientific Colloquium, Technische Universität Ilmenau, 2014. [21]O. Sigmund, A 99 line topology optimization code written in Matlab, Structural and multidisciplinary optimization, vol. 21, pp. 120-127, 2001. [22]M. Y. Wang, S. Chen, X. Wang, and Y. Mei, Design of multimaterial compliant mechanisms using level-set methods, Journal of Mechanical Design, vol. 127, pp. 941-956, 2005. [23]Z. Luo, L. Tong, M. Y. Wang, and S. Wang, Shape and topology optimization of compliant mechanisms using a parameterization level set method, Journal of Computational Physics, vol. 227, pp. 680-705, 2007. [24]S. Nishiwaki, M. I. Frecker, S. Min, and N. Kikuchi, Topology optimization of compliant mechanisms using the homogenization method, International Journal for Numerical Methods in Engineering, vol. 42, pp. 535-559, 1998. [25]R. Ansola, E. Veguería, J. Canales, and J. A. Tárrago, A simple evolutionary topology optimization procedure for compliant mechanism design, Finite Elements in Analysis and Design, vol. 44, pp. 53-62, 2007. [26]R. Ansola, E. Veguería, A. Maturana, and J. Canales, 3D compliant mechanisms synthesis by a finite element addition procedure, Finite Elements in Analysis and Design, vol. 46, pp. 760-769, 2010. [27]K. Liu and A. Tovar, An efficient 3D topology optimization code written in Matlab, Structural and Multidisciplinary Optimization, vol. 50, pp. 1175-1196, 2014. [28]I. G. Jang, I. Y. Kim, and B. M. Kwak, Analogy of strain energy density based bone-remodeling algorithm and structural topology optimization, Journal of biomechanical engineering, vol. 131, p. 011012, 2009. [29]F. A. Gomes and T. A. Senne, An algorithm for the topology optimization of geometrically nonlinear structures, International Journal for Numerical Methods in Engineering, vol. 99, pp. 391-409, 2014. [30]S. Chen and M. Y. Wang, Designing distributed compliant mechanisms with characteristic stiffness, in ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2007, pp. 33-45. [31]T. Buhl, C. B. Pedersen, and O. Sigmund, Stiffness design of geometrically nonlinear structures using topology optimization, Structural and Multidisciplinary Optimization, vol. 19, pp. 93-104, 2000. [32]T. E. Bruns and D. A. Tortorelli, Topology optimization of non-linear elastic structures and compliant mechanisms, Computer Methods in Applied Mechanics and Engineering, vol. 190, pp. 3443-3459, 2001. [33]H. C. Gea and J. Luo, Topology optimization of structures with geometrical nonlinearities, Computers & Structures, vol. 79, pp. 1977-1985, 2001. [34]D. Jung and H. C. Gea, Topology optimization of nonlinear structures, Finite Elements in Analysis and Design, vol. 40, pp. 1417-1427, 2004. [35]O. Querin, G. Steven, and Y. Xie, Evolutionary structural optimisation using an additive algorithm, Finite Elements in Analysis and Design, vol. 34, pp. 291-308, 2000. [36]X. Yang, Y. Xie, G. Steven, and O. Querin, Bidirectional evolutionary method for stiffness optimization, AIAA journal, vol. 37, pp. 1483-1488, 1999. [37]Y. Li, X. D. Huang, Y. M. Xie, and S. W. Zhou, Bi-directional evolutionary structural optimization for design of compliant mechanisms, in Key Engineering Materials, 2013, pp. 373-376. [38]黃國豐,劉至行, 反向型雙向演進式拓樸最佳化方法於撓性機構設計之研究,中國機械工程學會104年度年會暨第32屆全國學術研討會, 台灣高雄市, 2015. [39]A. Krishnakumar and K. Suresh, Hinge-Free Compliant Mechanism Design Via the Topological Level-Set, Journal of Mechanical Design, vol. 137, p. 031406, 2015. [40]G. N. Vanderplaats, Numerical optimization techniques for engineering design: with applications vol. 1, McGraw-Hill New York, 1984. [41]J. Vallejo, R. Avil, A. Hernández, and E. Amezua, Nonlinear optimization of planar linkages for kinematic syntheses, Mechanism and Machine Theory, vol. 30, pp. 501-518, 1995. [42]J. Hetrick and S. Kota, An energy formulation for parametric size and shape optimization of compliant mechanisms, Journal of Mechanical Design, vol. 121, pp. 229-234, 1999. [43]B. D. Jensen, M. B. Parkinson, K. Kurabayashi, L. L. Howell, and M. S. Baker, Design optimization of a fully-compliant bistable micro-mechanism, in 2001 ASME International Mechanical Enigineering Congress and Exposition, New York, NY, 2001, p. 2125. [44]P. Fourie and A. A. Groenwold, The particle swarm optimization algorithm in size and shape optimization, Structural and Multidisciplinary Optimization, vol. 23, pp. 259-267, 2002. [45]A. Kaveh and S. Talatahari, Size optimization of space trusses using Big Bang–Big Crunch algorithm, Computers & structures, vol. 87, pp. 1129-1140, 2009. [46]K. Chung, K.-S. Lee, and W.-S. Kim, Optimization of the design factors for thermal performance of a parallel-flow heat exchanger, International Journal of Heat and Mass Transfer, vol. 45, pp. 4773-4780, 2002. [47]Q. Xiong and A. Jutan, Continuous optimization using a dynamic simplex method, Chemical Engineering Science, vol. 58, pp. 3817-3828, 2003. [48]Y. M. Xie and G. P. Steven, Basic evolutionary structural optimization, Springer, 1997. [49]X. Huang and Y. Xie, Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method, Finite Elements in Analysis and Design, vol. 43, pp. 1039-1049, 2007. [50]X. Huang and Y.-M. Xie, A further review of ESO type methods for topology optimization, Structural and Multidisciplinary Optimization, vol. 41, pp. 671-683, 2010. [51]X. Huang and M. Xie, Evolutionary topology optimization of continuum structures: methods and applications, John Wiley & Sons, 2010. [52]H. Kim, O. Querin, and G. Steven, On the development of structural optimisation and its relevance in engineering design, Design studies, vol. 23, pp. 85-102, 2002. [53]G. N. Vanderplaats, Multidiscipline Design Optimization, Vanderplaats Research & Development, Incorporated, 2007. [54]S. S. Rao, Engineering optimization: theory and practice, John Wiley & Sons, 2009. [55]D. Petković, N. Pavlović, and N. Pavlović, Development and Design of A New Type of Passively Adaptive Compliant Gripper, in XI International SAUM Conference on Systems, Automatic Control and Measurements, Niš, Serbia, 2012, pp. 109-112.
|