跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 13:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:盧恆究
研究生(外文):Lu, Heng-Jiu
論文名稱:應用粗糙集方法於汽渦輪發電機組振動故障診斷之研究
論文名稱(外文):Vibration Fault Diagnosis of Steam Turbine-Generator Units Using Rough Set Method
指導教授:黃燕昌黃燕昌引用關係
口試委員:黃坤元楊百川楊宏澤
學位類別:碩士
校院名稱:正修科技大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:65
中文關鍵詞:粗糙集理論振動故障診斷
外文關鍵詞:Rough set theoryVibration fault diagnosis
相關次數:
  • 被引用被引用:5
  • 點閱點閱:478
  • 評分評分:
  • 下載下載:114
  • 收藏至我的研究室書目清單書目收藏:0
為使電力系統正常運轉,汽力發電廠內設備初期故障的預防與偵測工作,在其中佔有相當重要的地位;特別是影響範圍頗為廣大的大型汽渦輪發電機組。在汽渦輪發電機組初期故障時,如未能及早偵測,將導致後期因嚴重故障衍生的不良結果。隨著汽渦輪發電機組容量之持續增加與構造日趨複雜,機組設備各部份零組件間之聯繫關係更為緊密,此現象雖然導致機組振動原因更加多樣化與複雜化,但振動狀態仍是判斷機組是否正常運轉之一重要指標。再者,汽渦輪發電機組可能同時出現多重故障症兆與多重故障種類,以目前設備診斷技術而言,多重故障診斷問題仍有待進一步解決。因此,汽渦輪發電機組振動監測與故障診斷方法不僅對電力系統安全穩定運轉與經濟效益具有重大意涵,同時亦是電機工程領域重要之研究課題。此外,汽渦輪發電機組振動故障診斷方法為一非常複雜之系統診斷問題其涵輔釵h領域且與現場經驗密切相關;所以,此一問題亦引起工程界相當多的重視。
汽渦輪發電機組振動故障具有多樣化特徵與可能發生多重故障,傳統的監督式類神經網路方法雖可針對單一故障進行有效診斷,但對於多重故障之診斷,則需對各種多重故障樣本進行廣泛學習。如此將使得類神經網路之訓練樣本變大,並增加網路之訓練時間。此外,多重故障樣本之學習可能會降低類神經網路之診斷準確性,使得故障診斷工作變得更加困難。因此,為解決機組振動故障診斷問題,本文提出應用粗糙集理論之方法於汽渦輪發電機組振動故障診斷問題,所提方法將從振動數據資料庫中進行診斷規則之萃取。粗糙集理論藉由所萃取之診斷規則直接描述振動數據資料庫所蘊藏之診斷知識。測試結果顯示,所提方法可從數據資料中萃取既簡單又有效之診斷規則,且本文證實所提方法應用於實際系統故障診斷之可行性。
From the view of preventive measures, the work on earlier detection of the incipient fault of the fundamental equipment in the steam power plants, especially the steam turbine-generator units, has attracted quite much attention. As a vital device in the power system, the fault of the steam turbine-generator unit will lead itself to a very wide range of outage of the system. Due to the increasing capacity and structure complexity of steam turbine-generator units, the relations among components of the unit become closer than before. These causes resulting in the machine vibration become more various and complicated, but the vibration signal is still a very important information to evaluate the operating conditions of the machine. Furthermore, the vibration fault diagnosis of steam turbine-generator is a complicated system diagnosis problem; thus, this problem draws much attention from engineering field. Moreover, multiple faults may simultaneously occur in the steam turbine-generator units, and the multiple fault diagnosis has not been solved appropriately. Thus, the research on vibration fault diagnosis not only has great importance and benefit for the machine to operate safely and stably, but also is a frontier issue for electrical engineering.
The vibration faults of the steam turbine generators have the various characteristics and multiple faults may occur simultaneously. Although the traditional supervised neural network can diagnose the single fault effectively, in multiple faults diagnosis the neural network must be trained by all sample of multiple faults, which will greatly increase the computer efforts of the learn process. Thus the fault diagnosis can not be easily performed. To solve the vibration fault diagnosis of units, this paper presents rough set theory based approach to extract diagnosis rules from data base for vibration fault diagnosis of steam turbine-generator units. The proposed rough set approach directly describes the discovered knowledge by the extracted rules. The tests results show that the proposed approach can extract simple and effective diagnosis rules from data base, and the feasibility of applying the method to practical system has been demonstrated.
中文摘要 IV
英文摘要 V
致 謝 VI
目 錄 VII
表目錄 VIII
圖目錄 VIII
第一章 緒論 1
1-1 研究動機 1
1-2 研究背景 2
1-3 研究目的 11
1-4 論文架構 12
第二章 問題描述 13
第三章 粗糙集理論 18
3-1 粗糙集理論 18
3-2 粗糙集應用實例 26
3-3 約簡演算法 32
3-3-1 Johnson演算法(Johnson Algorithm, JA) 32
3-3-2遺傳演算法(Genetic Algorithm, GA) 34
第四章 測試結果與討論 38
4-1 單一故障案例測試 38
4-2 多重故障案例測試 44
第五章 結論及未來研究方向 46
參考文獻 48
[1] R. F. M. Marcal, M. Negreiros, A. A. Susin, and J. L. Kovaleski, “Detecting faults in rotating machines,” IEEE Instrumentation & Measurement Magazine, pp. 24-26, Dec. 2000.
[2] C. Chyn, R. C. Wu, and T. P. Tsao, “Torsional fatigue of turbine generator shafts due to network faults,” IEE Proceedings-Generation, Transmission, and Distribution, Vol. 143, No. 5, pp. 479-486, 1996.
[3] L. Wang, “Damping of torsional oscillations using excitation control of synchronous generator--The IEEE Second Benchmark model investigation,” IEEE Trans. on Energy Conversion, Vol. 6, No. 1, pp. 47-54, 1991.
[4] L. Wang and Y. Y. Hsu, “Damping of subsynchronous resonance using excitation controllers and static var compensators: A comparative study,” IEEE Trans. on Energy Conversion, Vol. 3, No. 1, pp. 6-13, 1988.
[5] L. Wang and C. H. Lee, “Stabilizing torsional oscillations using a shunt reactor controller,” IEEE Trans. on Energy Conversion, Vol. 6, No. 3, pp. 373-380, 1991.
[6] Y. S. Lee and C. J. Wu, “Application of superconducting magnetic energy storage unit on damping of turbogenerator subsynchronous oscillation,” IEE Proceedings-Generation, Transmission, and Distribution, Vol. 138, No. 5, pp. 419-426, 1991.
[7] Y. Y. Hsu and L. Wang, “Model control of a HVDC system for the damping of subsynchronous oscillations,” IEE Proceedings-Generation, Transmission, and Distribution, Vol. 136, No. 2, pp. 78-86, 1989.
[8] T. P. Tsao and C. Chyn, “Restriction of turbine vibrations in turbogenerators,” IEE Proceedings-Generation, Transmission, and Distribution, Vol. 137, No. 5, pp. 339-342, 1990.
[9] T. P. Tsao, C. Chyn, and H. H. Nien, “A large-scale mechanical filter - The application of turbogenerator flywheel coupling,” Electric Power systems Research, Vol. 25, No. 1, pp. 35-45, 1992.
[10] T. P. Tsao, C. Chyn, and T. S. Tsai, “The effect of turbogenerator shaft couplings in depressing the vibrations caused by power system disturbances,” Microcomputer Applications, Vol. 9, No. 2, pp. 66-71, 1990.
[11] 林祺祥,大型汽輪發電機組轉軸及葉片之轉矩振動改善,國立中山大學電機工程研究所博士論文,民國89年6月。
[12] H. F. Wang, F. J. Swift, and M. Li, “Analysis of thyristor controlled phase shifter applied in damping power system oscillations,” Electrical Power and Energy Systems, Vol. 19, No. 1, pp. 1-9, 1997.
[13] A. M. El-Serafi and S. O. Faried, “Effect of field discharge resistors on turbine-generator shaft torsional torques,” IEEE Trans. on Energy Conversion, Vol. 5, No. 1, pp. 129-136, 1990.
[14] M. L. Shelton, W. A. Mittelstadt, P. F. Winkelman, and W. J. Bellerby, “Bonneville power administration 1400-MW braking resistor,” IEEE Trans. on PAS, Vol. 94, No. 2, pp. 602-611, March/April, 1975.
[15] O. Wasynczuk, “Damping shaft torsional oscillations using a dynamically controlled resistor bank,” IEEE Trans. on PAS, Vol. 100, No. 7, pp. 3340-3349, 1981.
[16] P. S. Dolan, J. R. Smith, and W. A. Mittelstadt, “A study of TCSC optimal damping control parameters for different operating conditions,” IEEE Trans. on Power Systems, Vol. 10, No. 4, November 1995.
[17] S. S. Choi, F. Jiang, and G. Shrestha, “Suppression of transmission system oscillations by thyristor-controlled series compensation,” IEE Proceedings-Generation, Transmission, and Distribution, Vol. 143, No. 1, pp. 7-12, 1996.
[18] A. A. Edris, “Series compensation schemes reducing the potential of subsynchronous resonance,” IEEE Trans. on Power Systems, Vol. 5, No. 1, pp. 219-226, 1990.
[19] A. A. Fouad and K. T. Khu, “Damping of torsional oscillations in power systems with series-compensated lines,” IEEE Trans. on Power Systems, Vol. 97, No. 3, pp. 744-753, 1978.
[20] “Flexible AC transmission systems (FACTS),” Technical Report, EPRI EL-6943, Vol. 2, Part 1, Sept. 1991.
[21] E. V. Larsen, J. J. Sanchez-Gasca, and J. H. Chow, “Concepts for design of FACTS controllers to damp power swings,” Paper # 94 SM 532-2 PWRS, IEEE PES summer meeting in San Francisco, CA, July 1994.
[22] M. Noroozian and G. Andersson, “Damping of power system oscillations by use of controllable components,” IEEE Trans. on Power Delivery, Vol. 9, No. 4, pp. 2046-2054, October 1994.
[23] 楊大中等人,“串列轉子軸承系統之對心懸垂線分析”,第678期,第1-13頁,台電工程月刊,民國94年2月。
[24] 楊大中等人,“油膜軸承對串列轉子系統對心調配之效應研究”,第684期,第14-25頁,台電工程月刊,民國94年8月。
[25] 吳榮慶,頻譜分析技術的改進及在的應用,國立中山大學電機工程研究所博士論文,民國90年5月。
[26] G. Betta, C. Liguori, A. Paolillo, and A. Pierrosanto, “A DSP-based FFT-analyzer for the fault diagnosis of rotating machine based on vibration analysis,” IEEE Trans. on Instrumentation and Measurement, Vol. 51, No. 6, pp. 1316-1322, Dec. 2002.
[27] S. K. Goumas, M. E. Zervakis, and G. S. Stavrakakis, “Classification of washing machine vibration signals using discrete wavelet analysis for feature extraction,” IEEE Trans. on Instrumentation and Measurement, Vol. 51, No. 3, pp. 497-508, June 2002.
[28] I. Daubechies, “The wavelet transform, time-frequency localization and signal analysis,” IEEE Trans. on Information Theory, Vol. 36, No. 5, pp. 961-1005, 1990.
[29] S. Mallat, “A theory for multi-resolution signal decomposition: the wavelet representation,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 11, No. 7, pp. 674-69, 19893.
[30] A. J. Gonzalez, R. L. Osborne, C. T. Kemper, and S. Lowenfeld, “On-line diagnosis of turbine-generators using artificial intelligence,” IEEE Trans. on Energy Conversion, Vol. 1, No. 2, pp. 68-74, June 1986.
[31] X. Wang and S. Yang, “A parallel distributed knowledge-based system for turbine generator fault diagnosis,” Artificial Intelligence in Engineering, Vol.10, pp. 335-341, 1996.
[32] X. Wang, D. Zhu, F. Li, and N. Liu, “Application of expert system (ES) technology in fault diagnosis of steam turbine generators,” Proceedings of IEEE TENCON’02, pp. 1869-1872, 2002.
[33] R. G. Kirk and Z. Guo, “Expert system source identification of excessive vibration,” International Journal of Rotating Machinery, Vol. 9, No. 2, pp. 63-79, 2003.
[34] D. M. Xie, X. Song, H. L. Zhou, and M. W. Guo, “Fuzzy vibration fault diagnosis system of steam turbo-generator rotor,” Proceedings of the First International Conference on Machine Learning and Cybernetics, pp. 411-415, Beijing, Nov. 4-5, 2002.
[35] W. Meng, G. Bi, and H. Zhenya, “A neural network based fault fuzzy diagnosis system,” Journal of Electronics, Vol. 16, No. 2, pp. 121-126, March 1994.
[36] X. Zhang, J. Zhu, D. Qiu, J. Zho, and G. Cao, “Study on the backpropagation neural network applied for fuzzy diagnosis of 200MW turbogenerator set,” Journal of Vibration, Measurement & Diagnosis, Vol. 14, No. 4, pp. 23-30, Dec. 1994.
[37] X. Zhang, X. Miao, and J. Zhu, “A study on fuzzy neural network diagnosis modelling,” Journal of Aerospace Power, Vol. 15, No. 2, pp. 196-200, April 2000.
[38] S. Zhang, T. Asakura, X. Xu, and B. Xu, “Fault diagnosis system for rotary machines based on fuzzy neural networks,” Proceedings of the 2003 IEEE/ASME International Conference on Advance Intelligent Mechatronics, pp. 199-204, 2003.
[39] B. Kerezsi and I. Howaed, “Vibration fault detection of large turbogenerators using neural networks,” Proceedings of IEEE International Conference on Neural Networks, Vol. 1, pp. 121-126, Nov. 27-Dec. 1, 1995.
[40] C. Chen and C. Mo, “A method for intelligent fault diagnosis of rotating machinery,” Digital Signal Processing, Vol. 14, pp. 203-217, 2004.
[41] M. H. Wang, “Application of extension theory to vibration fault diagnosis of generator sets,” IEE Proceedings-Generation, Transmission, and Distribution, Vol. 151, No. 4, pp. 503-508, July 2004.
[42] M. Kawada,; K. Yamada,; K. Yamashita, and K. Isaka, “Fundamental study on vibration diagnosis for turbine generators using wavelet transform,” Proceedings of the Power Systems Conference and Exposition, IEEE PES, Vol.3, pp. 1215-1220, Oct. 10-13, 2004.
[43] M. Kawada, K. Yamada, Y. Kaneko, and K. Isaka, “Visualization of Contact Vibration generated on Turbine Model using Fast Haar Wavelet Transform,” Proceedings of the Power Systems Conference and Exposition (PSCE '06), IEEE PES, pp. 2249-2254, Oct. 29-Nov. 1, 2006, Atlanta, GA, USA.
[44] M. Kawada, K. Yamada, Y. Kaneko, and K. Isaka, “Discrimination of Vibration Phenomena on Model Turbine Rotor using In-Place Fast Haar Wavelet Transform,” Proceedings of the Power Engineering Society General Meeting, IEEE PES, pp. 1-6, June24-28, 2007, Tampa, FL, USA.
[45] W. M. Lin, C. H. Wu, C. H. Lin, and C. H. Su, “Grey Clustering Analysis Based Classifier for Steam Turbine-Generator Fault Diagnosis,” Proceedings of the 14th International Conference on Intelligent System Applications to Power Systems (ISAP 2007), pp. 188-193, Nov. 4-8, 2007, Kaohsiung, Taiwan.
[46] Z. Pawlak, “Rough sets,” International Journal of Computer and Information Science,” Vol. 11, No. 5, pp. 341-356, 1982.
[47] Z. Pawlak, J. Grzymala-Busse, R. Slowinski, and W. Ziarko, “Rough Sets,” Communications of the ACM, Vol. 38, No. 11, pp. 89-95, 1995.
[48] Z. Pawlak, “Rough Sets and Intelligent Dada Analysis,” Information Sciences, Vol. 147, No. 1, pp. 1-12, 2002.
[49] A. Skowron, and C. Rauszer, “The discernibility matrices and functions in information systems,” in R. Slowinski (Ed.), Intelligent Decision Support—Handbook of Applications and Advances of the Rough Sets Theory, System Theory, Knowledge Engineering and Problem Solving, Vol. 11, pp. 331-362, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992.
[50] D. S. Johnson, “Approximation algorithms for combinatorial problems,” Journal of Computer and System Sciences, Vol. 9, pp. 256–278, 1974.
[51] D. E. Goldberg, Genetic Algorithm in Search, Optimization and Machine Learning, Addison-Wesley, 1989.
[52] S. Vinterbo and A. Øhrn, “Minimal approximate hitting sets and rule templates,” In Predictive Models in Medicine: Some Methods for Construction and Adaptation, Department of Computer and Information Science, Dec. 1999. NTNU report 1999:130.
[53] S. Vinterbo and A. Øhrn, “Minimal approximate hitting sets and rule templates,” International Journal of Approximate Reasoning, Vol. 25, No. 2, pp. 123–143, 2000.
[54] J. Bazan, H. S. Nguyen, S. H. Nguyen, P. Synak, and J. Wróblewski, “Rough set algorithms in classification problem,” In L. Polkowski, S. Tsumoto, and T. Lin (Ed.), Rough Set Methods and Applications,Physica-Verlag, Heidelberg New York, pp. 49–88, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top