跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/06 08:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭郁潔
研究生(外文):Yu-Chieh Cheng
論文名稱:模擬水泥基壓電複合材料壓電性質
論文名稱(外文):Simulation of Piezoelectric Properties of 0-3 Type Cement-Based Piezoelectric Composites
指導教授:潘煌鍟潘煌鍟引用關係
指導教授(外文):Huang-Hsing Pan
口試委員:郭文田張朝順鍾育霖潘煌鍟
口試委員(外文):Wen-Ten KuoChao-Shun ChangYu-Lin ChungHuang-Hsing Pan
口試日期:2015-07-28
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:土木工程與防災科技研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:121
中文關鍵詞:水泥基壓電複合材料鋯鈦酸鉛立方模式孔隙率齡期壓電性質
外文關鍵詞:Cement-based piezoelectric compositeLead zirconate titanate (PZT)Cubes modelPorosityCuring dayPiezoelectric properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:342
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本研究考慮齡期影響及修正立方模式理論公式,提出一個模擬0-3型水泥基壓電複合材料壓電應變常數d33與相對介電常數εr的預測公式,其中水泥基壓電複合材料的鋯鈦酸鉛(PZT)體積含量分別為30%、40%、50%、60% 與70%。試體採用80MPa應力壓製成型,放置在90℃的水槽內以水氣養護,並在150℃油槽以1.5kV/mm電場極化40分鐘,經極化完成的試體在控制溫度23℃±1℃及濕度50%±1%的環境,量測試體的壓電性質。
極化時為避免電流極穿試體造成極化失敗及減少極化的激發時間,首先比較試體在養護1天、3 天、7 天、28 天、56 天和90 天齡期的介電損失、孔隙率和激發時間,結果顯示試體表面孔隙率介於1.31~5%,養護齡期越短的表面孔隙率越大;在表面孔隙率5% 的介電損失較小且極化所需的激發時間越少,因此得到試體極化的最佳養護齡期為1天。0-3型水泥基壓電複合材料的PZT含量越多時,d33與εr的壓電性質越好,但是壓電電壓常數g33並不會因PZT含量的增減而有明顯規律變化;試體極化前若經過140℃溫度處理,d33與εr的壓電性質會更好。立方模式經考慮齡期因素的影響,並與試驗值比較後,本研究提出預測d33與εr壓電性質的模擬公式,在代入複合材料組成材料的電性與壓電性質後,所得到的模擬值非常接近試驗值,顯示所提出的模擬公式可用來預測0-3型水泥基壓電複合材料的壓電性質。

Based on the cubes model modified by curing effect and regression analysis, an empirical formula is proposed to predict piezoelectric strain constant d33 and relative dielectric constant εr of 0-3 type cement-based piezoelectric composites, where piezoelectric inclusions is lead zirconate titanate (PZT) with 30%-70% volume fraction respectively. The composites were dryly mixed by cement and PZT, and then pressed by 80MPa compression to form a disc-like specimen. Specimens were cured at 90℃ with water, after that, were poled at 150℃ with 1.5kV/mm poling field for 40 min. Piezoelectric and dielectric properties of the composite were measured at 23℃±1℃ and 50%±1% humidity.
In order to polarize specimens easily and reduce trigger time during the polarization, dielectric loss, porosity and trigger time of the composite with 1-90 curing days were investigated. Surface porosity of specimens lies between 1.31% and 5%, and the specimen with the shorter curing day always has the larger porosity. Results indicated that the optimum curing day for the cement-based piezoelectric composites was cured at 1 day because the composite containing 5% surface porosity has the smallest dielectric loss and trigger time, compared with the others specimens. More PZT contents in the composites show the better d33 and εr, but this is not the case for piezoelectric voltage constant g33. The specimens with 140℃ treatment for 40 min before the polarization have the better d33 and εr values, compared with those without temperature treatment. The simulated values of d33 and εr for cement-based piezoelectric composites, calculated from the proposed empirical formula, show a good agreement with the experimental data.

摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VIII
圖目錄 X
符號說明 XVI
第一章 緒論 1
1.1研究動機 1
1.2研究目的 2
1.3研究方法 2
1.4研究流程 4
第二章 文獻回顧 5
2.1水泥 5
2.1.1水泥的水化作用階段 5
2.1.2養護齡期 6
2.2壓電材料 6
2.2.1壓電材料種類 7
2.2.2壓電材料特性 7
2.2.3壓電特性參數 9
2.3水泥基壓電複合材料 9
2.4 0-3型水泥基壓電複合材料 11
2.4.1壓電陶瓷含量的影響 12
2.4.2壓電陶瓷粒徑的影響 14
2.4.3試體製程的影響 16
2.4.4極化條件的影響 17
2.4.5極化後齡期的影響 26
2.5複合材料壓電應變常數和相對介電常理論公式 33
第三章 實驗計畫 35
3.1實驗目的 35
3.2實驗材料 35
3.3實驗變數 38
3.3.1前導試驗-養護天數 38
3.3.2前導試驗-壓電性質量測環境條件 39
3.3.3 PZT含量變化 39
3.4實驗設備 40
3.5試體配比及編號 46
3.6試體製作養護及研磨 47
3.7微觀試體製作 50
3.8極化技術 51
3.9壓電性質量測與計算 52
第四章 結果與討論 55
4.1前導試驗 55
4.1.1養護天數與孔隙率 55
4.1.2養護天數與介電損失及激發時間 64
4.1.3養護天數與壓電性質 65
4.1.4環境溫度與壓電性質 68
4.2 PZT含量與極化後壓電性質 70
4.3模擬壓電性質 75
4.3.1立方模式模擬與試驗值比較 75
4.3.2修正立方模式公式 83
第五章 結論與建議 92
5.1結論 92
5.2建議 94
參考文獻 95
附錄一、口試委員審查意見與說明對照表 100
附錄二、作者簡歷 102

1.Soh,C.K., Tseng, K.K.H., Bhalla,S. and Gupta, A., 2000, “Performance of smart piezoceramic patchs in health monitoring of a RC bridge”, Smart Materials Structure, Vol. 9, pp. 533-542.
2.Aizawa, S., Kakizawa, T. and Higasino, M., 1998, “Case studies of smart materials for civil structure”, Smart Materials Structure, Vol. 7, pp. 617-626.
3.Xu, D., Cheng, X., Huang, S. and Jiang, M., 2010, “Identifying technology for structural damage based on the impedance analysis of piezoelectric sensor”, Construction and Building Materials, Vol. 24, pp.2522-2527.
4.Wang, D., Liu, J., Zhou, D. and Huang, S.L., 1999, “Using PVDF piezoelectric film sensors for in situmeasurement of stayed-cable tension of cable-stayed bridges”, Smart Materials Structure, Vol. 8, pp.554-559.
5.李宏男,李軍,宋鋼兵, 2003,”採用壓電智能材料的土木工程結構控制研究發展”,中國科技論文(http://www.paper.edu.cn), pp. 1-13.
6.Xu, D., Banerjee, S., Wang, Y., Huang, S.,, Cheng, X., 2015,“Temperature and loading effects of embedded smart piezoelectric sensor for health monitoring of concrete structures”, Construction and Building Materials, Vol. 76, pp. 187-193
7.Tawie, R. and Lee, H. K., 2010,“Piezoelectric-based non-destructive monitoring of hydration of reinforced concrete as an indicator of bond development at the steel-concrete interface”, Cement and Concrete Research, Vol. 40, pp. 1697-1703.
8.Xu, D., Cheng, X., Huang, S. and Jiang, M., 2010,“Identifying technology for structural damage based on the impedance analysis of piezoelectric sensor”, Construction and Building Materials, Vol. 24, pp. 2522– 2527
9.Jabir, Saad A. A. and Gupta, N. K., 2013 “Condition monitoring of the strength and stability of civil structures using thick film ceramic sensors”, Measurement, Vol. 46, pp. 2223–2231.
10.Karthick,S.P.,Muralidharan,S.,Saraswathy,V. and Thangavel, K., 2014,“Long-term relative performance of embedded sensor and surface mounted electrode for corrosion monitoring of steel in concrete structures”, Sensors and Actuators B, Vol. 192, pp. 303– 309.
11.楊政穎, 2003,鋼筋混凝土構件斷層掃描之顯像處理,碩士論文,中央大學,土木工程研究所,桃園.
12.王仲宇, 2009, “橋梁的健康診斷”,科學發展,434期, pp. 18-23.
13.范文綱, 2009,橋梁基礎局部沖刷監測與安全預警系統,碩士論文,中央大學,土木工程研究所,桃園.
14.張為光,李維峰,梅興泰,陳正興, 2011,”結構健康監測與損傷診斷”,土木水利,Vol. 38, No. 3, pp. 17-25.
15.陳星宇, 2009,壓電智能骨材於結構損傷評估之應用,碩士論文,台北科技大學,土木與防災研究所,台北.
16.林建輝, 2009,智能骨材於結構損傷檢測之應用,碩士論文,台北科技大學,土木與防災研究所,台北.
17.蕭珮如, 2014,應用壓電感測器於混統結構早強評估及健康診斷,碩士論文,台北科技大學,土木與防災研究所,台北.
18.Li, Z., Zhang, D. and Wu, K.R., 2002, “Cement-based 0-3 Piezoelectric composites”, J. American Ceramics Society, Vol. 85, pp. 305-313.
19.張東, 吳科如, 李宗津, 2002, “2-2型水泥基壓電機敏複合材料的研制” ,壓電與聲光,24卷, 3期,pp.217-231.
20.張東, 吳科如, 李宗津, 2002, “水泥基壓電機敏複合材料的可行性分析和研究” ,建築材料學報,5卷, 2期,pp.141-146.
21.張東,吳科如,李宗津, 2002,“0-3型水泥基壓電機敏複合材料的制备和性能”, 硅酸盐學報, 30卷, 2期, 394-399頁.
22.Zhang, D., Li, Z. and Wu, K. R., 2002, “2-2 Piezoelectric cement matrix composite: Part II Actuator effect”, Cement and Concrete Research, Vol. 32, pp. 825-830.
23.Li, Z., Dong, B. and Zhang, D., 2005, “Influence of polarization on properties of 0–3 cement-based PZT composites”, Cement and Concrete Composites, Vol. 27, pp. 27-32.
24.Huang, S., Chang, J., Lu, L., Liu, F., Ye, Z. and Cheng, X., 2006, “Preparation and polarization of 0–3 cement based piezoelectric composites”, Materials Research Bulletin, Vol. 41, pp. 291-297.
25.Cheng, X., Huang, S., Chang, J., Xu, R., Liu, F. and Lu, L., 2005,“Piezoelectric and dielectric properties of piezoelectric ceramic–sulphoaluminate cement composites”, J. European Ceramic Society, Vol. 25, pp. 3223-3228.
26.潘煌鍟,陳彥年, 2011,“ 0-3型PZT水泥基壓電複合材料製程與極化技術”,中國土木水利工程學刊,23卷1期,1-10頁 .
27.Dong, B., Xing, F. and Li, Z., 2007,“The study of poling behavior and modeling of cement-based piezoelectric ceramic composites”, Materials Science and Engineering A, Vol.456, pp.317-322.
28.Chaipanich, A., Jaitanong, N. and Tunkasiri, T. ,2007, “Fabrication and properties of PZT–ordinary Portland cement composites”, Materials Letters, Vol. 61, pp.5206-5208.
29.Chaipanich, A., 2007“Effect of PZT particle size on dielectric and piezoelectric properties of PZT-cement composites”, Current Applied Physics, Vol.7, pp.574-577.
30.Huang, S., Chang, J., Liu, F., Lu, L., Ye, Z. and Cheng, X., 2004, “Poling process and piezoelectric properties of lead zirconate titanate/sulphoaluminate cement composites”, Journal of Materials Science, Vol. 39, pp. 6975 - 6979.
31.Li, Z. and Gonga, H.,2008,“Effects of particle size on the piezoelectric properties of 0-3 PZT/cement composites”,AIP Conference Proceedings,Vol.973,pp. 538-543.
32.Huang, S., Ye, Z., Hu, Y., Chang, J., Lu, L. and Cheng, X.,2007, “Effect of forming pressures on electric properties of piezoelectric ceramic/sulphoaluminate cement composites”, Composites Science and Technology, Vol.67, pp.135-139.
33.Gong, H., Li., Z., Zhang Y., Fan, R., 2009, “Piezoelectric and dielectric behavior of 0-3 cement-based composites mixed with carbon black”, Journal of the European Ceramic Society, Vol. 29, pp.2013-2019.
34.Wang, F., Wang, H., Song, Y. and Sun, H., 2012, “High piezoelectricity 0-3 cement-based piezoelectric composites”, Materials Letters, Vol.76, pp.208-210.
35.龔紅宇、張玉軍、車松蔚、趙玉軍,2011,“粒度對水泥基壓電複合材料的壓電性能和力學性能的影響”,人工晶體學報,第40卷第1期,pp.213-217。
36.姜長庚,2013,爐石與飛灰水泥壓電複合材料在不同養護天數與極化電場的壓電特性,國立高雄應用科技大學,碩士論文。
37.Chaipanich, A., 2007, “Dielectric and piezoelectric properties of PZT–cement composites”, Current Applied Physics, Vol.7, pp.537–539.
38.周卓明,2003,壓電力學,全華科技圖書,台北。
39.吳朗,1994,電子陶瓷-壓電,全欣資訊圖書,台北。
40.Physik Instrumente (PI) GmbH & Co.KG. “The Piezoelectric Effect: Fundamentals of Piezoelectricity and Piezoelectric Actuators”. http://ppt.cc/pB5k
41.Dong ,B. and Li, Z., 2005, “Cement-based piezoelectric ceramic smart composites”, Composites Science and Technology, Vol.65, pp1363-1371.
42.Huang, S., Xu, D., Chang, J., Ye, Z. and Cheng, X., 2007, “Influence of water–cement ratio on the properties of 2–2 cement basedpiezoelectric composite”, Materials Letters, Vol.61, pp.5217-5219.
43.Cheng, X., Xu, D., Lu, L., Huang, S. and Jiang, M., 2010, “Performance investigation of 1-3 piezoelectric ceramic–cement composite”, Materials Chemistry and Physics, Vol.121, pp.63-69.
44.葉仁豪,2011,卜作嵐材料與極化電場對0-3型水泥壓電複合材料的影響,國立高雄應用科技大學,碩士論文。
45.楊瑞豪,2014,矽基材料對PZT水泥複合材料壓電性質的影響,國立高雄應用科技大學,碩士論文。
46.Chaipanich, A. and Jaitanong, N., 2008, “Effect of poling time on piezoelectric properties of 0-3 PZT-portland cement composites”, Taylor and Francis group, Vol. 35, pp.73-18.
47.汪建民,1994,陶瓷技術手冊,中華民國產業科技發展協進會,台北。
48.Wen, S. and Chung, D. D. L., 2002, “Cement-based materials for stress sensing by dielectric measurement”, Cement and Concrete Research, Vol.32, pp.1429-1433.
49.Newnham, R. E., Bowen, L. J., Klicker, K. A. and Cross, L. E, 1980 ,“Composite piezoelectric transducers”, Materials in Engineering, Vol. 2, pp. 93-106.
50.Banno, H., 1988, “Recent developments of piezoelectric composites in Japan”, In: Saito, S., editor, Advanced Ceramics, Oxford University Press, pp. 8-26.
51.Mazur, K., 1995, “Polymer-ferroelectric ceramic composites”, In: Nalwa, H.S. and Dekker, M., editor, Ferroelectric Polymers: Chemistry, Physics, and Application, New York, Inc., pp. 539-610.
52.Furukawa, T., Ishida, K. and Fukada, E., 1979, “Piezoelectric properties in the composite systems of polymer and ceramics”, J. Applied Physics, Vol. 50, pp. 4904-4907.
53.Yamada, T., Ueda, T. and Kitayama, S. T., 1982, “Piezoelectric of a high-content lead zirconate titanate/polyer composite”, J. Applied Physics, Vol. 53, pp. 4328-4332.
54.Pan, H. H. and Chiang, C. K., 2014,“Effect of aged binder on piezoelectric properties of cement-based piezoelectric composites”, Acta Mechanica, Vol. 225, pp. 1287-1299.
55.Banerjee, S. and Cook-Chennault, K. A., 2011, “An analytical model for the effective dielectric constant of a 0-3-0 composite”, J. Engineering Materials and Technology, Vol. 133, pp. 041005-1~041005-5
56. ATHY L.F., 1930. Density, porosity and compactation of sedimentary rocks, Bull. Amer. Assoc. Petrol. Geol. v. 14, pp. 1-24.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top