|
1. Kolomiets, B., Physica Status Solidi (b) 1964, 7 (2), 359-372. 2. Greenwood, N. N.; Earnshaw, A., Chemistry of the Elements. 1984; p 645-786. 3. Alam, H.; Ramakrishna, S., Nano Energy 2013, 2 (2), 190-212. 4. Kraemer, D., et al., Nature Materials 2011, 10 (7), 532-538. 5. Lin, X., et al., Journal of Solid State Chemistry 2012, 195, 172-177. 6. Yin, W., et al., Dalton Transactions 2012, 41 (18), 5653-5661. 7. Lee, C.-D., et al. In Development of radiation detection materials, SPIE Defense, Security, and Sensing, International Society for Optics and Photonics: 2012; pp 83730X-83730X-6. 8. Li, J.-F., et al., NPG Asia Materials 2010, 2 (4), 152-158. 9. Chung, D.-Y., et al., Science 2000, 287 (5455), 1024-1027. 10. Malliakas, C. D., et al., Journal of the American Chemical Society 2013, 135 (39), 14540-14543. 11. Liu, M.-L., et al., 2009. 12. Yao, J., et al., Inorganic Chemistry 2010, 49 (20), 9212-9216. 13. Yin, W., et al., Journal of Solid State Chemistry 2016. 14. Schlesinger, T., et al., Materials Science and Engineering: R: Reports 2001, 32 (4), 103-189. 15. Chemla, D., et al., Optics Communications 1971, 3 (1), 29-31. 16. Mei, D., et al., Inorganic Chemistry 2011, 51 (2), 1035-1040. 17. Nguyen, S. L., et al., Chemistry of Materials 2013, 25 (14), 2868-2877. 18. Wibowo, A. C., et al., Inorganic Chemistry 2013, 52 (12), 7045-7050. 19. Li, X., et al., Dalton Transactions 2016, 45 (2), 532-538. 20. Banerjee, S., et al., Journal of the American Chemical Society 2008, 130 (37), 12270-12272. 21. Li, H., et al., Chemistry of Materials 2012, 24 (22), 4434-4441. 22. Assoud, A., et al., Chemistry of Materials 2004, 16 (11), 2215-2221. 23. Pocha, R.; Johrendt, D., Inorganic Chemistry 2004, 43 (21), 6830-6837. 24. Wang, Y. C.; DiSalvo, F. J., Journal of Solid State Chemistry 2001, 156 (1), 44-50. 25. Brechtel, E., et al., Zeitschrift für Naturforschung B 1979, 34 (7), 921-925. 26. Bugaris, D. E., et al., Inorganic Chemistry 2010, 49 (5), 2568-2575. 27. Babo, J.-M.; Albrecht-Schmitt, T. E., Journal of Solid State Chemistry 2012, 187, 264-268. 28. Assoud, A.; Kleinke, H., Chemistry of Materials 2005, 17 (17), 4509-4513. 29. Rundle, R., The Journal of Chemical Physics 1949, 17 (8), 671-675. 30. Rundle, R., Journal of the American Chemical Society 1963, 85 (1), 112-113. 31. 鐘明諺, 交通大學應用化學系博士論文 2013. 32. Assoud, A., et al., Journal of Solid State Chemistry 2005, 178 (4), 1087-1093. 33. Graf, C., et al., Molecules 2009, 14 (9), 3115-3131. 34. Dürichen, P., et al., Journal of Solid State Chemistry 1998, 140 (1), 97-102. 35. Getzschmann, J., et al., Zeitschrift für Kristallographie-New Crystal Structures 1997, 212 (1), 87-87. 36. Assoud, A., et al., Chemistry of Materials 2004, 16 (21), 4193-4198. 37. Kromm, A.; Sheldrick, W. S., ChemInform 2006, 37 (12). 38. Volk, K., et al., Zeitschrift für Naturforschung B 1980, 35 (2), 136-140. 39. Zhang, X., et al., Angewandte Chemie International Edition in English 1995, 34 (1), 68-71. 40. Assoud, A., et al., Zeitschrift für anorganische und allgemeine Chemie 2000, 626 (10), 2103-2106. 41. Quintero, M., et al., Revista mexicana de física 2014, 60 (2), 168-175. 42. Tampier, M.; Johrendt, D., Zeitschrift für anorganische und allgemeine Chemie 2001, 627 (3), 312-320. 43. Hersh, P. A., Wide band gap semiconductors and insulators: synthesis, processing and characterization. ProQuest: 2007. 44. Assoud, A., et al., Chemistry of Materials 2005, 17 (9), 2255-2261. 45. Llanos, J., et al., Journal of Solid State Chemistry 2003, 173 (1), 78-82.
|