跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.36) 您好!臺灣時間:2025/12/11 05:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳沁儀
研究生(外文):Chin-Yi Chen
論文名稱:氮化鎵奈米線電晶體短通道效應的探討
論文名稱(外文):Scaling Issues in Trigate GaN Nanowire Transistors
指導教授:吳育任
口試委員:余沛慈彭隆瀚陳奕君
口試日期:2012-07-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:65
中文關鍵詞:氮化鎵電晶體短通道
外文關鍵詞:GaNhigh electron mobility transistorshort channel effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:273
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
This thesis analyzes the scalability of nitride-based nanowire high electron mobility transistors (HEMTs). The positive polarization charge between the AlGaN and GaN interface induces high density of electron which also known as the two dimensional electron gate (2DEG). With the 2DEG, the device does not need high n-type doping to increase the electron density in the channel. Therefore, the mobility can reach a high value due to less impurity scattering in the device. We use a fully three dimensional(3D) self-consistent nite element model to solves drift-di usion and Poisson equations and obtains the electrical properties in the device with 3D structure. In the scaling issue of Si-based transistors, the structure of silicon on insulator(SOI)
and the FINFET are two common ways to suppress the short channel
e ect (SCE). In the GaN-based transistor, AlGaN and AlInN back
barrier, similar to the structure of SOI, can suppress the SCE. How-
ever, the negative polarization charge at the interface of the GaN
channel and the back barrier reduces the saturation current.
In this thesis, we discuss the GaN-HEMT in a 3D tri-gate struc-
ture, which is similar to the structure of FINFET. The I-V curve,
vtransconductance (gm), sub-threshold swing, and drain induce barrier
lowering, fT are discussed.
The tri-gate structure can well suppress the SCE when the wire
width is reduced. However, the fT decreases at the same time due to
the e ect of the lateral gate. To optimize this tri-gate structure, we
replace the AlGaN top insulator with AlInN to increase the 2DEG in
the channel.
Furthermore, we reduce the distance between drain and source to
reduce the channel resistance. With a smaller channel resistance in the
channel, a higher fT can be obtained. In sum, the optimize structure
can suppress the SCE without sacri cing the fT .

口試委員會審查表 . . . . . . . . . . . . . . .. i
致謝. . . . . . . . . . . . . . . . . . . . . . ii
中文摘要. . . . . . . . . . . . . . . . . . . . iii
英文摘要 . . . . . . . . . . . . . . . . . . . v
目錄. . . . . . . . . . . . . . . . . . . . . . vii
圖目錄. . . . . . . . . . . . . . . . . . . . . ix
表目錄. . . . . . . . . . . . . . . . . . . . . xviii
1 Introduction . . . . .. . . . . . . . . . . . 1
1.1 The Property of the GaN and the GaN Based Transistor 1
1.2 The Short Channel E ect . . . . . . . . . . . . . . 7
1.3 The Common Approaches to Suppress the Short Chan-
nel E ect . . . . . . . .... . . . . . . . . . . . . . . 11
2 Formalism . . . . . . . . . . . . . . . . . . . . . . 17
2.1 Use of Monte Carlo method to obtain the v E curve . 17
2.2 Calculation of the Poisson and drift-di usion equations
by the 3D nite element method . . . . . . . . . . . . . 19
3 Formalism for Calculating the fT in a 3D Structure . . 22
3.1 Introduction . . . . . . . . . . . . . . . . . . . . 22
3.2 Formalism . . . . . . . . . . .. . . . . . . . . . . 23
3.3 Applying Eqn. 3.2 to a 3D Structure . . . . . . . . 24
3.3.1 Calculate the fT from the Leff and vave . . . . . 25
4 The scaling capability of the trigate HEMT . . . . . . 33
4.1 The structure and the material parameters . . . . . 33
4.2 The I-V curve . . . . . . . . . . . . . . . . . .. . 35
4.3 The transfer curve and the sub-threshold swing . . . 38
4.4 gm and the fT . . . . . . . . . . . . . . . . . . . 40
5 Optimize the trigate HEMT to reduce SCE . . . . . . . 43
5.1 modulating the wire width . . . . . . . . . . . . .. 44
5.1.1 The I-V curve . . . . . . . . . . . . . . . . . .. 44
5.1.2 The transfer curve and the sub-threshold swing . . 45
5.1.3 The gm and the fT . . . . . . . . . . . . . . . . .47
5.2 Device optimization . . . . . . . . . . . . . . . .. 50
5.2.1 Two approaches . . . . . . . . . . . . . . . . . . 50
5.2.2 The Results of the Two Approaches . . . . . . . . .51
6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . 57
Bibliography . . . . . . . . . . . . . . . . . . . . . . 58

[1] http : ==en:wikipedia:org=wiki=Gallium nitride.
[2] http://nanoall.blogspot.tw/2011/02/nanomembranes.html.
[3] http://iopscience.iop.org/0268-1242/27/2/024019/article?sid=IOPP
[4] http://thurj.org/as/2011/01/1035/.
[5] O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Her-
mann, M. Eickho , M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Scha , and L. F. Eastman, Pyroelectric Properties of Al(In)GaN/GaN Hetero and Quantum Well Structures," Journal of Physics: Condensed Matter, vol. 14, no. 13, p. 3399, 2002.
[6] Y.-F. Wu, B. Keller, S. Keller, N. Nguyen, M. Le, C. Nguyen, T. Jenkins, L. Kehias, S. Denbaars, and U. Mishra, High Speed and High Power AlGaN/GaN MODFETs," in Device Research Conference Digest, 1997. 5th, pp. 142-143, 1997.
[7] J. Garrido, F. Calle, E. Munoz, I. Izpura, J. Sanchez-Rojas, R. Li, and K. Wang, Low Frequency Noise and Screening E ects in AlGaN/GaN HEMTs," Electronics Letters, vol. 34, no. 24, pp. 2357-2359, 1998.
[8] O. Aktas, W. Kim, Z. Fan, F. Stengel, A. Botchkarev, A. Salvador, B. Sverdlov, S. Mohammad, and H. Morkoc, High
Transconductance GaN MODFETs," in Electron Devices Meeting, 1995., International, pp. 205-208, 1995.
[9] O. Aktas, Z. Fan, A. Botchkarev, S. Mohammad, M. Roth,
T. Jenkins, L. Kehias, and H. Morkoc, Microwave Performance
of AlGaN/GaN Inverted MODFET''s," Electron Device Letters,
IEEE, vol. 18, no. 6, pp. 293-295, 1997.
[10] N. Nguyen, B. Keller, S. Keller, Y.-F. Wu, M. Le, C. Nguyen, S. Denbaars, U. Mishra, and D. Grider, GaN/AlGaN MODFET with 80 GHz fmax and > 100 V Gate-Drain Beakdown Voltage," Electronics Letters, vol. 33, no. 4, pp. 334-335, 1997.
[11] U. Mishra, Y.-F. Wu, B. Keller, S. Keller, and S. Denbaars, GaN Microwave Electronics," in Millimeter Waves, 1997 Topical Symposium on, pp. 35-39, 1997.
[12] S. Heikman, S. Keller, S. DenBaars, and U. Mishra, Growth ofFe Doped Semi-Insulating GaN by Metalorganic Chemical Vapor Deposition," Applied physics letters, vol. 81, p. 439, 2002.
[13] A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, and S. J. Pearton, Electrical and Optical Properties of Fe-doped Semi-Insulating GaN Templates," Applied Physics Letters, vol. 83,
no. 16, pp. 3314-3316, 2003.
[14] J. Webb, H. Tang, S. Rolfe, and J. Bardwell, Semi-insulating C-doped GaN and High-Mobility AlGaN/GaN Heterostructures
Grown by Ammonia Molecular Beam Epitaxy," Applied physics
letters, vol. 75, p. 953, 1999.
[15] K. Horio, K. Yonemoto, H. Takayanagi, and H. Nakano, Physics-based Simulation of Bu er-Trapping E ects on Slow Current Transients and Current Collapse in GaN Field E ect Transistors,"Journal of applied physics, vol. 98, no. 12, p. 124502, 2005.
[16] T. Palacios, A. Chakraborty, S. Heikman, S. Keller, S. DenBaars, and U. Mishra, AlGaN/GaN High Electron Mobility Transistors with InGaN Back-Barriers," Electron Device Letters, IEEE, vol. 27, no. 1, pp. 13-15, 2006.
[17] M. Micovic, P. Hashimoto, M. Hu, I. Milosavljevic, J. Duvall,P. Willadsen, W.-S. Wong, A. Conway, A. Kurdoghlian, P. Deelman, J.-S. Moon, A. Schmitz, and M. Delaney, GaN Double Heterojunction Field E ect Transistor for Microwave and Millimeterwave Power Applications," in Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International, pp. 807-810, 2004.
[18] D. S. Lee, X. Gao, S. Guo, and T. Palacios, InAlN/GaN HEMTs With AlGaN Back Barriers," Electron Device Letters, IEEE, vol. 32, no. 5, pp. 617-619, 2011.
[19] D. S. Lee, X. Gao, S. Guo, D. Kopp, P. Fay, and T. Palacios, 300GHz InAlN/GaN HEMTs With InGaN Back Barrier," Electron Device Letters, IEEE, vol. 32, no. 11, pp. 1525{1527, 2011.
[20] H. Sun, A. Alt, H. Benedickter, E. Feltin, J.-F. Carlin, M. Gonschorek, N. Grandjean, and C. Bolognesi, 100-nm-Gate (Al,In)N/GaN HEMTs Grown on SiC With fT = 144 GHz," Electron Device Letters, IEEE, vol. 31, no. 4, pp. 293-295, 2010.
[21] F. Medjdoub, M. Alomari, J.-F. Carlin, M. Gonschorek, E. Feltin, M. Py, N. Grandjean, and E. Kohn, Barrier-Layer Scaling of 61InAlN/GaN HEMTs," Electron Device Letters, IEEE, vol. 29, no. 5, pp. 422-425, 2008.
[22] K. Shinohara, D. Regan, A. Corrion, D. Brown, S. Burnham, P. Willadsen, I. Alvarado-Rodriguez, M. Cunningham, C. Butler, A. Schmitz, S. Kim, B. Holden, D. Chang, V. Lee, A. Ohoka, P. Asbeck, and M. Micovic, Deeply-Scaled Self-Aligned-Gate GaN DH-HEMTs with Ultrahigh Cut-O Frequency," in Electron Devices Meeting (IEDM), 2011 IEEE International, pp. 19.1.1-19.1.4, 2011.
[23] T. H. Ning, Why BiCMOS and SOI BiCMOS?," IBM Journal
of Research and Development, vol. 46, no. 2.3, pp. 181{186, 2002.
[24] G. G. Shahidi, SOI Technology for the GHz era," IBM Journal of Research and Development, vol. 46, no. 2.3, pp. 121-131, 2002.
[25] X. Huang, W.-C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzier-ski, E. Anderson, H. Takeuchi, Y.-K. Choi, K. Asano, V. Subra-manian, T.-J. King, J. Bokor, and C. Hu, Sub 50-nm FinFET: PMOS," in Electron Devices Meeting, 1999. IEDM Technical Digest. International, pp. 67-70, 1999.
[26] B. Doyle, S. Datta, M. Doczy, S. Hareland, B. Jin, J. Kava-lieros, T. Linton, A. Murthy, R. Rios, and R. Chau, High Performance Fully-Depleted Tri-Gate CMOS Transistors," Electron Device Letters, IEEE, vol. 24, no. 4, pp. 263-265, 2003.
[27] J.-W. Yu, Y.-R. Wu, J.-J. Huang, and L.-H. Peng, 100GHz
Depletion-Mode Ga2O3/GaN Single Nanowire MOSFET by Photo-Enhanced Chemical Oxidation Method," in Electron Devices Meeting (IEDM), 2010 IEEE International, pp. 30.3.1-30.3.4, 2010.
[28] B. Lu, E. Matioli, and T. Palacios, Tri-Gate Normally-on GaN Power MISFET," Electron Device Letters, IEEE, vol. 33, no. 3,pp. 360-362, 2012.
[29] J.-W. Yu, Y.-R. Wu, J.-J. Huang, and L.-H. Peng, 75GHz
Ga2O3/GaN Single Nanowire Metal- Oxide-Semiconductor Field-
E ect Transistors," in Compound Semiconductor Integrated Cir
cuit Symposium (CSICS), 2010 IEEE, pp. 1-4, 2010.
[30] Y. R. Wu and J. Singh, Transient Study of Self-heating Effects in AlGaN/GaN HFETs: Consequence of Carrier Velocities, Temperature, and Device Performance," J. Appl. Phys., vol. 101, no. 11, p. 113712, 2007.
[31] D. Vasileska and S. M. Goodnick, Computational Electronics. Morgan & Claypool publishers, 2006.
[32] C.-K. Li and Y.-R. Wu, Study on the Current Spreading Effect and Light Extraction Enhancement of Vertical GaN/InGaN
LEDs," Electron Devices, IEEE Transactions on, vol. 59, no. 2,pp. 400-407, 2012.
[33] Y. R. Wu, M. Singh, and J. Singh, Device Scaling Physics and Channel Velocities in AlGaN/GaN HFETs: Velocities and Effective Gate Length," IEEE Trans. Electron Devices, vol. 53, no. 4, pp. 588-593, 2006.
[34] M. Guillorn, J. Chang, A. Bryant, N. Fuller, O. Dokumaci, X. Wang, J. Newbury, K. Babich, J. Ott, B. Haran, R. Yu, C. Lavoie, D. Klaus, Y. Zhang, E. Sikorski, W. Graham, B. To, M. Lofaro, J. Tornello, D. Koli, B. Yang, A. Pyzyna, D. Neumeyer, M. Khater, A. Yagishita, H. Kawasaki, and W. Haensch, FinFET Performance Advantage at 22nm: An AC
Perspective," in VLSI Technology, 2008 Symposium on, pp. 12-
13, 2008.
[35] V. Subramanian, A. Mercha, B. Parvais, M. Dehan, G. Groe-seneken, W. Sansen, and S. Decoutere, Identifying the Bottle-necks to the RF Performance of FinFETs," in VLSI Design, 2010. VLSID ''10. 23rd International Conference on, pp. 111-116, 2010.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊