參考文獻
1. H. H. Hamdeh, J. C. Ho, S. A. Oliver, R. J. Willey, J. Kramer, Y. Y. Chen, S. H. Lin, Y. D. Yao, M. Daturi, and G. Busca, “Ferrimagnetic zinc ferrite fine powders”, IEEE Trans. Magn., 31 (1995) 3808-3810.
2. T. Sato, K. Haneda, M. Seki, and T. Iijima, “Morphology and magnetic properties of ultrafine ZnFe2O4 particles ”, Appl. Phys. A, 50 (1990) 13-16.
3. B. Jeyadevan, K. Tohji, and K. Nakatsuka, “Structure analysis of coprecipitated ZnFe2O4 by extended X-ray-absorption fine structure”, J. Appl. Phys., 76 (1994) 6325-6327.
4. J. Chen, G. Srinivasan, S. Hunter, V. S. Babu, and M. S. Seehra, “Observation of superparamagnetism in rf-sputtered films of zinc ferrite”, J. Magn. Magn. Mater., 146 (1995) 291-297.
5. K. Tanaka, M. Makita, Y. Shimizugawa, K. Hirao, and N. Soga, “Structure and high magnetization of rapidly quenched zinc ferrite”, J. Phys. Chem. Solids, 59 (1998) 1611-1618.
6. P. Druska, U. Steinike and V. Šepelák “Surface structure of mechanically activated and of mechanosynthesized zinc ferrite”, J. Solid State Chem., 146 (1999) 13-21.
7. V. Šepelák, U. Steinike, D. Chr. Uecker, S. Wiβmann, and K. D. Becker, “Structural Disorder in Mechanosynthesized zinc ferrite”, J. Solid State Chem., 135 (1998) 52-58.
8. T. Sato, K. Haneda, T. Iijima, and M. Seki, Ferrites, Proc. Sixth Inter. Conf. On Ferrites, The Japan Society of Powder and Powder Metallurgy, Tokyo and Kyoto, (1992) p. 984.
9. X. Li, G. Lu, and S. Li, “Synthesis and characterization of fine particle ZnFe2O4 powders by a low temperature method”, J. Alloys and Comp., 235 (1996) 150-155.
10. M. A. Ahmed, L. Alonso, J. M. Palacios, C. Cilleruelo, J. C Abanades, “Structural changes in zinc ferrites as regenerable sorbents for hot coal gas desulfurization”, Solid State Ionics, 138 (2000) 51-56.
11. T. Kodama, M. Tabata, K. Tominaga, T. Yoshida, and Y. Tamaura, “Decomposition of CO2 and CO into carbon with active wüstite prepared from Zn(Ⅱ)-bearing ferrite”, J. Mater. Sci., 28 (1993) 547-552.
12. S. Komarneni, M. Tsuji, Y. Wada, and Y. Tamaura, “Nanophase ferrite for CO2 greenhouse gas decomposition”, J. Mater. Chem., 7 (1997) 2339-2340.
13. Z. H. Yuan and L. D. Zhang, “Synthesis, characterization and photocatalytic activity of ZnFe2O4/TiO2 nanocomposite”, J. Mater Chem., 11 (2001) 1265-1268.
14. F. J. Guaita, H. Beltrán, E. Cordoncillo, J. B. Carda, and P. Escribano, “Influence of the precursors on the formation and the properties of ZnFe2O4”, J. Eur. Ceram. Soc., 19 (1999) 363-372.
15. J. J. Ritter, and P. Maruthamuthu, “Synthesis of NiFe2O4 by metal-organo complex method”, J. Mater. Synth. Proc., 3 (1995) 331-337.
16. B. S. Randhawa, “Preparation Of ferrites from the therolysis of transition metal ferrioxalate precursor”, J. Mater. Chem., 10 (2000) 2847-2852.
17. C. D. E. Lakeman and D. A. Payne, “Sol —gel processing of electrical and magnetic ceramics”, Mater. Chem. Phys., 38 (1994) 305-324.
18. Y. Xia, T. Armstrong, F. Prado, and A. Manthiram, “Sol-gel synthesis, phase relationships, and oxygen permeation properties of Sr4Fe6-xCoxO13+δ(0≦x≦3)”, Solid State Ionic, 130 (2000) 81-90.
19. A. Clearfiled, A. M. Gadalla, W. H. Marlow, and T. W. Livingston, “Synthesis of ultrafine grain ferrites”, J. Am. Ceram. Soc., 72 (1989) 1789-1792.
20. M. Kumazawa, H. M. Cho, and E. Sada, “Hydrothermal synthesis of barium ferrite fine particles from geothite”, Chapman & Hall, (1993) p. 5247-5250.
21. P. Ravindranathan and K. C. Patil, “A low temperature path to the preparation of ultrafine ferrite”, Am. Ceram. Soc. Bull., 66 (1987) 688-692.
22. T. T. Srinivasan, P. Ravindranathan, L. E. Cross, R. Roy, R. E. Newnham, S. G. Sankar, and K. C. Patil, “Studies on high-density nickel zinc ferrites and its magnetic properties using novel hydrazine precursors”, J. Appl. Phys., 63 (1988) 3789-3791.
23. V. Moye, K. S. Rane and V. N. Kamat Dalal, “Optimization of synthesis of nickel-zinc-ferrite from oxalates and oxalato hydrazinate precursors”, J. Mater. Sci.: Mater. Electr., 1 (1990) 212-218.
24. K. Suresh and K. C. Patil, “Combustion synthesis and properties of fine particle Li-Zn ferrites”, J. Mater. Sci. Lett., 14 (1995) 1074-1077.
25. N. S. Gajbhiye, U. Bhattacharya, V. S. Darshane, “Thermal decomposition of znic-iron citrate precursor”, Thermochim. Acta, 264 (1995) 219-230.
26. Y. S. Cho, V. L. Burdick, and R. W. Amarakoon, “Synthesis of nanocrystalline lithium zinc ferrites using polyacrylic acid, and their initial densification”, J. Am. Ceram. Soc., 82 (1999) 1416-1420.
27. J. L. Martin de Vidales, A. López-Delgado, E. Vila, And F. A. López, “The effect of the starting solution on the physico-chemical properties of zinc ferrite synthesized at low temperature”, J. Alloys Compd., 287 (1999) 276-283.
28. Z. Wu, M. Okuya, and S. Kaneko, “Spray pyrolysis deposition of zinc ferrite films from metal nitrates solutions”, Thin Solid Films, 385 (2001) 109-114.
29. K. Matsumoto, K. Yamaguchi and T. Fujii, “Preparation of Bismuth-substituted yttrium iron garnet powders by the citrate gel process”, J. Appl. Phys., 69 (1991) 5918-5920.
30. K. Haneda, C. Miyakawa and K. Goto, “Preparation of small particles of SrFe12O19 with high coercity by ydrolysis of metal-organic complexs”, IEEE Trans. Magn., Mag-23 (1987) 3134-3136.
31. X. Batlk, X. Obradors, M. Medarde, J. Rodríguez-Carvajal, M. Pernet and M. Vallet-Regí, “Surface spin canting in BaFe12O19 fine particles”, J. Magn. Magn. Mater., 124 (1993) 228-238.
32. W. Zhong, W. Ding, N. Zhang, J. Hong, Q. Yan and Y. Du, “Key step in synthesis of ultrafine BaFe12O19 by sol-gel technique”, J. Magn. Magn. Mater., 168 (1997) 196-202.
33. W. Zhong, W. Ding, Y. Jiang, N. Zhang, J. Zhang, Y. Du, and Q. Yan, “Preparation and magnetic properties of barium hexaferrite nanoparticles produced by the citrate process”, J. Am. Ceram. Soc., 80 (1997) 3258-3262.
34. Č. Jovalekić, M. Zdujić, A. Raaković and M. Mitrić, “Mechanochemical synthesis of NiFe2O4 ferrite”, Mater. Letters, 24 (1995) 365-368.
35. O. Muller, R. Wilson, H. Colijn, and W. Krakow, “δ-FeO(OH) and its solutions: Part 3 A study of the thermal decomposition”, J. Mater. Sci., 15 (1980) 959-973.
36. N. Millot, S. Begin-Colin, P. Perriat, and G. Le Caër, “Structure, cation distribution, and properties of nanocrystalline Titanomaghetites obtained by mechanosynthesis: Comparison with soft chemistry”, J. Solid State Chem., 139 (1998) 66-78.
37. J. M. Yang, W. J. Tsuo, and F. S. Yen, “Preparation of ultrafine nickel ferrite powders using Mixed Ni and Fe tartrates”, J. Solid State Chem., 145 (1999) 50-57.
38. J. M. Yang, W. J. Tsuo, and F. S. Yen, “Characterization of thermal behavior of Li-Fe-tartrate gels (Molar ratio Li/Fe≦1/5)”, J. Solid State Chem., 160 (2001) 100-107.
39. T. Yamaguchi, and T. Kimura, “Kinetic studies on the precipitation of hematite from iron-rich spinel solid solutions”, J. Am. Ceram. Soc., 59 (1976) 333-335.
40. F. F. Y. Wang, K. M. Krishnan, D. E. Cox, and T. G. Reynolds, “Compositional and structural studies of a MnZn ferrite under different processing conditions”, J. Appl. Phys., 52 (1981) 2436-2438.
41. Y. Murakami, A. Sawata and Y. Tsuru, “Crystallization behavior of amorphous solid solutions and phase separation in the Cr2O3-Fe2O3 system”, J. Mater. Sci., 34 (1999) 951-955.
42. D. Sriram, R. L. Snyder and V. R. W. Amarakoon, “Nanophase copper ferrite using an organic gelation technique”, Mat. Res. Soc. Symp. Proc., 457 (1997) 81-87.
43. J. Z. Jiang, P. Wynn, S. Mørup, T. Okada, and F. J. Berry, “Magnetic structure evolution in mechanically milled nanostructured ZnFe2O4 particles”, NanoStrucred Mater., 12 (1999) 737-740.
44. C. N. Chinnasamy, A. Narayanasamy, N. Ponpandian, and K. Chattopadhyay, “The influence of Fe3+ ions at tetrahedral sites on the magnetic properties of nanocrystalline ZnFe2O4”, Mater. Sci. Eng., A 304-306 (2001) 983-987.
45. K. Tkáčová, V. Šepelák, N. Števulová, and V. V. Boldyrev, “Structure-reactivity study of mechanically activated zinc ferrite”, J. Solid State Chem., 123 (1996) 100-108.
46. V. Šepelák, S. Wiβmann, K. D. Becker, “Magnetism of nanostructured mechanically activated and mechanosynthesized spinel ferrite”, J. Magn. Magn. Mater., 203 (1999) 135-137.
47. W. Kim and F. Saito, “Mechanochemical synthesis of zinc ferrite from zinc oxide and α-Fe2O3”, Powder Technol., 114 (2001) 12-16.
48. Č. Jovalekić, M. Zdujić, A. Radaković, and M. Mitrić, “Mechanochemical synthesis of NiFe2O4 ferrite”, Mater. Lett., 24 (1995) 365-368.
49. N. Randrianantoandro, A. M. Mercier, M. Hervieu, and J. M. Grenèche, “Direct phase tranformation from hematite to maghemite during high energy ball milling”, Mater. Lett., 47 (2001) 150-158.
50. A. R. West, in Solid State Chemistry and Its Applications, Chapter 12, John Wiley & Sons, (1986) p.442-443.
51. T. Sano and Y. Tamaura, “Synthesis of (Li, Mn) ferrites by reaction of ultrafineγ-Fe2O3 with LiMn2O4 spinel at 650℃”, Mater. Res. Bull., 34 (1999) 389-401.
52. K. S. Rane, V. M. S. Verenkar, R. M. Pednekar, P. Y. Sawant, “Hydrazine method of synthesis of γ-Fe2O3 useful in ferrite preparation. Part Ⅲ-study of hydrogen iron oxide phase in γ-Fe2O3”, J. Mater. Sci.: Mater Elect., 10 (1999) 121-132.
53. A. Goldman, Modern Ferrite Technology, New York: Van Nostrand Reinhold, (1990) p.21-44.
54. G. Winkler, in Magnetic Properties of Materials, J. Smit (ed.), McGraw-Hill, New York, (1971) p.20-63.
55. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, in Introduction to Ceramics, Ch. 19, 2nd, John Wiley & Sons, New York, (1991).
56. B. D. Cullity, in Introduction to Magnetic Materials, Addison-Wesley, Reading, MA, (1972).
57. S. Chikazumi, in Physics of Ferromagnetism, Vol. I, Syokabo, Tokyo, (1978) p. 222.
58. J. M. Hastings and F. F. Roberts, “Neutron diffraction studies of zinc ferrite and nickel ferrite”, Rev. Mod. Phys., 25 (1953) 114-119.
59. C. Wagner, “Uber den mechanismus der bildung von ionenverbindungen höherer ordnung (Doppelsalze, Spinelle, Silikate)”, Z. Phys. Chem., B34 (1936).
60. P. Reijnen, The formation of ferrites from the metal oxides, in Science of Ceramics, Vol. 3, A. Stewart (ed.), Academic Press, New York, (1967) p. 171.
61. S. Ogawa and Y. Nakagawa, “Cation diffusion coefficients and vacancy densities in Mn-Zn-ferrites”, J. Phys. Soc. Japan, 23 (1967) 79-184.
62. R. Freer, “Bibliography sel-diffusion and impurity diffusion in oxides”, J. Mater. Sci., 15 (1980) 803-824.
63. L. C. F. Blackman, “On the formation of Fe2+ in the system MgO-Fe2O3-MgFe2O4 at high temperatures”, J. Am. Ceram. Soc., 42 (1959) 143-145.
64. D. Elwell, R. Parker, and C. J. Tinsley, “The formation of nickel ferrite”, Solid State Comm., 4 (1966) 69-71.
65. P. Reijnen, The formation of ferrites from the metal oxides, in Science of Ceramics, Vol. 3, A. Stewart (ed.), Academic Press, New York, (1967) p. 245-261.
66. P. Reijnen, Investigation into solid state reactions and equilibria in the system MgO-FeO-Fe2O3, Fifth Intern. Symp. Reactivity Solids, Munich, 1964, Elsevier, Amsterdam, (1965) p. 562-571.
67. S. L. Blum and P. C. Li, “Kinetics of nickel ferrite formation”, J. Am. Ceram. Soc., 44 (1961) 611-617.
68. G. M. Chow and K. E. Gonsalves, in Nanometerials: Synthesis, Properties and Applications, A. S. Edelstein and R. C. Cammarata ed., Ch. 3, Philadelphia, PA: Institute of Physics Pub. Bristol, (1996).
69. N. Ichinose, Y. Ozaki, and S. Kashū, in Superfine Particle Technology, Ch. 3 and Ch. 4, Springer-Verlag London Limited, (1992).
70. A. Putnis, in Introduction to Mineral Sciences, Ch. 10 and Ch. 11, Cambridge University Press, (1992).
71. C. W. Chen, in Magnetism and Metallurgy of Soft Magnetic Materials, Dover, New York, (1986) p. 219-232.
72. R. L. Blake, R. E. Hessevick, T. Zoltai, and L. W. Finger, “Refinement of the hematite structure”, Am. Min., 51 (1966) 123-129.
73. R. M. Conell and U. Schwertmann, in The Iron Oxides, Structure, Properties, Occurrence and Uses, VCH, Weinheim, (1996).
74. E. Wolska and U. Schwertmann, “Nonstoichiometric structures during dehydroxylation of goethite”, Z. Kristallogr., 189 (1989) 223-237.
75. E. Wolska and U. Schwertmann, “Selective X-ray line broadening in goethite-derived hematite phase”, Phys. Stat. Sol., A114 (1989) K11-K16.
76. W. H. Bragg, “The structure of magnetite and the spinels”, Nature 95 (1915) 561.
77. S. Nishikawa, “The structure of some crystals of the spinel group”, Proc. Math. Phys. Soc. Tokyo, 8 (1915) 199-209.
78. R. J. Hill, J. R. Craig, and G. V. Gibbs, “Systematics of the spinel structure type”, Phys. Chem. Min., 4 (1979) 317-339.
79. G. A. Waychunas, in Crystal chemistry of irons and oxyhydroxides. D. H. Lindsley (ed.), Oxide minerals petrolic and magnetic significance. Reviews in Mineralogy, Vol. 25, Min. Soc. Am., (1991) p.11-68.
80. W. Feitknecht, “Einfluß der teilchengröße auf den mechanismus von festkörperreaktionen”, Rev. Pure Applied Chem., (1964) 423-440.
81. J. D. Bernal, D. R. Dasgupta, A. L. Mackay, “The oxides and hydroxides of iron and their structural interrelationships”, Clay Min. Bull., 4 (1959) 15-30.
82. M. P. Morales, C. Pecharroman, C. T. Gonzalez, and C. J. Serna, “Structral characteristics of uniform γ-Fe2O3 particles with different axial (length/width) ratios”, J. Solid State Chem., 108 (1994) 158-163.
83. M. P. Morales, C. J. Serna, F. Bødker, and S. Mørup, “Spin canting due to structural disorder in maghemite”, J. Phys.: Condens. Matter, 9 (1997) 5461-5467.
84. W. Feitknecht and K. J. Gallagher, “Mechanisms for the oxidation of Fe3O4”, Nature, 228 (1970) 548-549.
85. C. J. Goss, “Saturation magnetization, coercivity and lattice parameter changes in system Fe3O4-γ-Fe2O3, and their relationship to structure”, Phys. Chem. Min., 16 (1988) 164-171.
86. P. B. Braun, “A superstructure in spinels”, Nature, 170 (1952) 1123.
87. T. W. Swaddle and P. Oltmann, “Kinetics of the magnetite — maghemite — hematite transformation, with special reference to hydrothermal systems”, Can. J. Chem., 58 (1980) 1763-1772.
88. A. K. Nikumbh, A. D. Aware, and P. L. Sayanekar, “Electrical and magnetic properties of γ-Fe2O3 synthesized from ferrous tartrate one and half hydrate”, J. Magn. Magn. Mater., 114 (1992) 27-34.
89. I. David and A. J. E. Welch, “The oxidation of magnetite and related spinels”, Trans. Faraday Soc., 52 (1956) 1642-1650.
90. L. S. Darken and R. W. Gurry, J. Am. Chem. Soc., 68 (1946) 798.
91. L. S. Darken R. W. Gurry, Physical Chemistry of Metals, McGraw-Hill, New York, (1953).
92. K. Egger and W. Feitknecht, “Über die oxidation von Fe3O4 zu γ- und α-Fe2O3. Die differenzthermoanalytische (DTA) and thermogravimetrische (TG) verfolgung des reaktionsablaufes an künstlichen formen von Fe3O4”, Helv. Chim. Acta, 45 (1962) 2042-2057.
93. W. Feitknecht and U. Mannweiler, “Der mechanismus der umwandlung von γ-zu α-eisensesquioxid”, Helv. Chim. Acta, 50 (1967) 570-581.
94. P. S. Sidhu, “Transformation of trace element-substituted maghemite to heamatite”, Clays Clay Min., 36 (1988) 31-38.
95. E. Tronc, J. P. Jolivet, and J. Livage, “Mössbauer investigation of the γ-→α-Fe2O3 transformation in small particles”, Hyperfine Interactions, 54 (1990) 737-740.
96. S. Grimm, T. Stelzner, J. Leuthäußer, S. Barth, K. Heide, “Particle size effects on the thermal behaviour of maghemite synthesized by flame pyrolysis”, Therm. Acta, 300 (1997) 141-148.
97. S. Kachi, K. Momiyama and S. Shimizu, “An Electron Diffraction Study and a Theory of the Transformation from γ-Fe2O3 to α-Fe2O3”, J. Phys. Soc. Japan., 18 (1963) 106-116.
98. P. Ayyub, M. S. Multani, M. Barma, V R Palkar, and R Vijayaraghavan, “Size-induced structural phase transitions and hyperfine properties of microcrystalline Fe2O3”, J. Phys. C: Solid State Phys., 21 (1988) 2229-2245.
99. M. S. Multani and P. Ayyub, “Size and pressure driven phase transitions”, Condensed Matter News, 1 (1991) 25-27.
100. 溫惠玲,2000,“由Boehmite製得之氧化鋁粉末的θ→α-Al2O3相轉換”,國立成功大學資源工程所博士論文。101. X. Ye, D. Li, Z. Jiao, and L. Zhang, “Thermal stability of nanocrystalline maghemite Fe2O3”, J. Phys. D: Appl. Phys., 31 (1998) 2739-2744.
102. K. J. Gallagher, W. Feitknecht, and U. Mannweiler, “Mechanism of oxidation of magnetite toγ-Fe2O3”, Nature, 217 (1968) 1118-1121.
103. B. Gillot, A. Rousset, and G. Dupre, “Influence of crystallite size on the oxidation kinetics of magnetite”, J. Solid State Chem., 25 (1978) 263-271.
104. U. Colombo, G. Fagherazzi, F. Gazzarrini, G. Lanzavecchia, and G. Sironi, “Mechanism of low temperature oxidation of magnetites”, Nature, 219 (1968) 1036-1037.
105. W. Feitknecht and K. J. Gallagher, “Mechanisms for the oxidation of Fe3O4”, Nature, 228 (1970) 548-549.
106. P. S. Sidhu, R. J. Gilkes, and A. M. Posner, “Mechanism of the low temperature oxidation of synthetic magnetites”, J. Inorg. Nucl. Chem., 39 (1977) 1953-1958.
107. P. Periat and B. Gillot, “A model for coupled diffusion reactions in Mn-Zn ferrites. Generalization of the Ficks''s first law”, Solid State Ionics, 67 (1993) 35-43.
108. F. Brailsford, in Physical Principles of Magnetism, van Nostrand, London, (1966) p. 123, 212, 216, and 90-91.
109. P. W. Anderson and H. Hasegawa, “Consideration on double exchange”, Phys. Rev., 100 (1955) 675.
110. C. Kittel, in Introduction to Solid State Physics, 6th, John Wiley & Sons, New York, (1991) p.61, p.404.
111. Z. J. Zhou and J. J. Yan, “Sputtering iron oxide films by a water vapor process”, J. Magn. Magn. Mater., 115 (1992) 87-98.
112. R. S. de Biasi and T. C. Devezas, “Anisotropy field of small magnetic particles as measured by resonance”, J. Appl. Phys., 49 (1978) 2466-2469.
113. R. S. de Biasi and T. C. Devezas, “Shape anisotropy of ultrafine magnesium ferrite precipitates”, J. Magn. Magn. Mater., 35 (1983) 121-122.
114. A. I. Vogel, A Textbook of Quantitative Inorganic Analysis, Longmans, New York, (1961) p.308.
115. B. D. Cullity, in Element of X-ray Diffraction, 2nd, Addison-Wesley Inc., London, 1978.
116. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, in Introduction to Ceramics, 2nd, John Wiley & Sons, New York, (1991) p.61-63.
117. P. A. Badkar and J. E. Bailey, “The mechanism of simultaneous sintering and phase transformation in alumina”, J. Mater. Sci., 11 (1976) 1794-1706.
118. P. C. Hayes and P. Grieveson, “Microstructural changes on the reduction of hematite to magnetite”, Metall. Trans. B, 12B (1981) 579-587.
119. Y. Lin, W. Zhu, O. K. Tan, and Y. Shen, “Structural and gas sensing properties of ultrafine Fe2O3 prepared by plasma enhanced chemical vapor deposition”, Mater. Sci. Eng. B, 47 (1997) 171-176.
120. B. Gillot, R. M. Benloucif, A. Rousset, “A study of infrared absorption in the oxidation of Zinc-substituted magnetites to defect phase γ and hematite”, J. Solid State Chem., 39 (1981) 329-336.
121. G. Dupre, A. Rousset, and P. Mollard, “Etude des solutions solides entre le sesquioxyde de fer cubique γ-Fe2O3 et le ferrite de zinc ZnFe2O4 ”, Mater. Res. Bull., 11 (1976) 473-476.
122. K. S. Rane, V. M. S. Verenkar, and P. Y. Sawant, “Hydrazine method of synthesis of γ-Fe2O3 useful in ferrite preparation. Part Ⅳ-preparation and characterization of magnesium ferrite, MgFe2O4 fromγ-Fe2O3 obtained from hydrazinated iron oxyhydroxides and iron(Ⅱ) carboxylato — hydrazinates”, J. Mater. Sci.: Mater Elect., 10 (1999) 133-140.
123. M. V. Cabañas, M. Vallet-Regí, M. Labeau, and J. M. González-Calbet, “Spherical iron oxide particles synthesized by an aerosol technique”, J. Mater. Res., 8 (1993) 2694-2701.
124. J. G. Li, T. Ikegami, J. H. Lee, T. Mori, and Y. Yajima, “A wet-chemical process yielding reactive magnesium aluminate spinel (MgAl2O4) powder”, Ceramics International, 27 (2001) 481-489.
125. C. G. Levi, “Metastability and microstructure evolution in the synthesis of inorganics from frecusors”, Acta Mater., 46 (1998) 787-800.
126. J. W. Edington, in Practical Election Microscopy in Materials Science-Interpretation of Transmission Electron Micrographs, Vol. 3, N. V. Philips’ Gloeilampenfabrieken, Eindhoven, (1975) p.80-84.
127. M. L. Balmer, F. F. Lange, and C. G. Levi, “Metastable phase selection and partitioning for Zr(1-x)AlxO(2-x/2) materials synthesized with liquid precursors”, J. Am. Ceram. Soc., 77 (1994) 2069-2075.
128. M. L. Balmer, F. F. Lange, V. Jayaram, and C. G. Levi, “Development of nano-composite microstructures in ZrO2-Al2O3 via the solution precursor method”, J. Am. Ceram. Soc., 78 (1995) 1489-1494.
129. A. Putnis and J. D. C. McConnel, in Principles of Mineral Behaviour-(Geoscience Texts; Vol. 1), Elsevier, New York, (1980) p.197-228.
130. B. Gillot, “DTA curves of selective oxidation of submicrometer mixed valency spinels: Data table for the oxidation temperature of transition metals and its relation to the cation-oxygen distance”, J. Solid State Chem., 113 (1994) 163-167.
131. M. Laarj, S. Kacim, and B. Gillot, “Cationic distribution and oxidation mechanism of trivalent manganese ions in submicrometer MnxCoFe2-xO 4 spinel ferrites”, J. Solid State Chem., 125 (1996) 67-74.
132. B. S. Hemingway, “Thermodynamics properties for bunsenite, NiO, magnetite, Fe3O4 and hematite, Fe2O3, which comments on selected oxygen buffer reactions”, Amer. Mineral., 75 (1990) 781-790.
133. C. Laberty and A. Navrotsky, “Energetics of stable and metastable low-temperature iron oxides and oxyhydroxides”, Geocim. Cosmochim. Acta, 62 (1998) 2905-2913.
134. S. Fritsch and A. Navrotsky, “Thermodynamic properties of manganese oxides”, J. Amer. Ceram. Soc., 79 (1996) 1761-1768.
135. E. Tronc, J. P. Jolivot, “Preparation of γ-Fe2O3 particles”, in Nanophase materials, synthesis, properties, applications, G. C. Hadjipanayis and R. W. Siegel, Kluwer (ed.), Academic Publishers, Boston, (1993) p. 21-28.
136. T. Kamiyama, K. Haneda, T. Sato, S. Ikeda, and H. Asano, “Cation distribution in ZnFe2O4 fine particles studied by neutron powder diffraction”, Solid State Comm., 81 (1992) 563-566.
137. H. H. Hamdeh, J. C. Ho, S. A. Oliver, R. J. Willey, G. Oliveri, and G. Busca, “Magnetic properties of partiall-inverted zinc ferrite aerogel powders”, J. Appl. Phys., 81 (1997) 1851-1857.
138. M. R. Anantharaman, S. Jagatheesan, K. A. Malini, S. Sindhu, A. Narayanasamy, C. N. Chinnasamy, J. P. Jacobs, S. Reijne, K. Seshan, R. H. H. Smits, and H. H. Brongersma, “On the magnetic properties of ultra-fine zinc ferrite”, J. Magn. Magn. Mater., 189 (1998) 83-88.
139. G. F. Goya, H. R. Rechenberg, M. Chen and W. B. Yelon, “Magnetic irreversibility in ultrafine ZnFe2O4 particles”, J. Appl. Phys., 87 (2000) 8005-8007.
140. M. T. Clark, and B. J. Evans, “Enhanced magnetization and cation distributions in nanocrystalline ZnFe2O4: A conversion electron Mössbauer spectroscopic investigation”, IEEE Trans. On Mag., 33 (1997) 3745-3747.
141. T. Sato, T. Iijima, M. Seki, and N. Inagaki, “Magnetic properties of ultrafine ferrite particles”, J. Magn. Magn. Mater., 65 (1987) 252-256.
142. E. Kester, B. Gillot, and Ph. Tailhades, “Analysis of the oxidation process and mechanical evolution in nanosized copper spinel ferrite. Role of stresses on the coercivity”, Mater. Chem. Phys., 51 (1997) 258-264.
143. H. B. Landoulsi and P. Vergnon, “Magnetic moment ofγ-Fe2O3 microcrystals: morphological and size effect”, J. Mater. Sci., 18 (1983) 3399-3403.
144. V. S. Zaitsev, D. S. Filimonov, I. A. Presnyakov, R. J. Gambino, and B. Chu, “Physical and chemical properties of magnetite and magnetite-polymer nanoparticles and their colloidal dispersions”, J. Colloid. Interface Sci., 212 (1999) 49-57.
145. M. Langlet and J. C. Joubert, “”, IEEE Trans. Magn., 24 (1988) 1691.
146. J. P. Jacobs, A. Maltha, J. G. H. Reintjes, J. Drimal, V. Ponec, and H. H. Brongersma, “The surface of catalytically active spinels”, J. Catal., 147 (1994) 294-300.
147. I. Mohai, J. Szépvölgyi, I. Bertóti, M. Mohai, J. Gubicza, and T. Ungár, “Thermal plasma synthesis of zinc ferrite nanopowders”, Solid State Ionics, 141-142 (2001) 163-168.