跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/27 05:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊建民
研究生(外文):Janne-Min Yang
論文名稱:以酒石酸鹽法低溫(<500℃)合成超微粒鋅鐵氧磁體粉末之反應生成機構研究
論文名稱(外文):Investigation on the Formation Mechanism of Ultra-fine Zn-ferrite Powders at Low Temperature (<500℃) by Tartrate Technique
指導教授:顏富士顏富士引用關係
指導教授(外文):Fu-Su Yen
學位類別:博士
校院名稱:國立成功大學
系所名稱:資源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:中文
中文關鍵詞:鐵氧磁體奈米粉末反應機構有機金屬鹽法低溫合成磁鐵礦鋅鐵氧磁體尖晶石
外文關鍵詞:ferritenanosize powdersreaction mechanismmetal-organic methodlow temperature synthesismagnetitezinc ferritespinel
相關次數:
  • 被引用被引用:5
  • 點閱點閱:1024
  • 評分評分:
  • 下載下載:178
  • 收藏至我的研究室書目清單書目收藏:1
本論文在探討以有機前導物熱分解合成鋅鐵氧磁體粉末之過程中,中間相的產生及其變化對最終相性質之影響。其目的在暸解藉一有機前導物於低溫合成一單相、微粒且化學組成均勻的鋅鐵氧磁體粉末的可能作法。在「奈米材料科技」之發展趨勢下,本研究更凸顯其重要性。
化學合成法是目前製備奈米粉末最常使用的方法,而有機前導物法是化學合成法中極為重要的方法之一,可於低溫合成超微粒的陶瓷粉末。然而,超微粒鐵氧磁體粉末的合成過去大部分的研究,皆只著重在有機鹽的改變對鐵氧磁體粉末生成溫度高低的影響,對其反應過程之中間相生成觀察及反應機構探討,論述甚少。本研究針對其反應過程及反應機構進行觀察與探討,以暸解中間相的產生及變化所造成的影響,彌補前人在此方面研究之不足,並建構一較完整的鐵氧磁體粉末反應合成機構。
觀察樣品之獲得是以酒石酸所製備的膠體粉末作為反應前導物,先以DTA/TG對起始膠體粉末作熱分析,據此以決定煆燒溫度及熱處理條件。當達到特定熱處理條件後即刻降溫,降溫的方式是將樣品移至液態氮圍繞的環境下淬冷,獲得觀察樣品。然後以XRD、Fe2+分析、BET、TEM及XPS等,進行樣品的特性分析。
在反應中間相生成的觀察,發現酒石酸鹽分解後,首先生成ZnO及Fe3O4。隨溫度升高Fe3O4會氧化成γ-Fe2O3,此γ-Fe2O3再與ZnO反應生成ZnFe2O4。隨升溫速率加快,Fe3O4的氧化溫度會升高,所得的Fe3O4與ZnO之晶粒也會成長,使得Fe3O4無法完全轉換成γ-Fe2O3,造成鋅鐵氧磁體粉末生成速率下降及粒徑大小不均一,因而有含鋅的γ-Fe2O3(Znx2+Fe3+(8-2x)/3□(1-x)/3O42-)或未反應的γ-Fe2O3殘留。二者會在隨後升高溫度處理下再分解,生成γ-Fe2O3及ZnFe2O4。γ-Fe2O3並隨即相轉換成α-Fe2O3:
Znx2+Fe3+(8-2x)/3□(1-x)/3O42- → x ZnFe2O4+4(1-x)/3γ-Fe2O3
4(1-x)/3γ-Fe2O3 → 4(1-x)/3α-Fe2O3
應特別注意的是α-Fe2O3一旦生成,其粒徑會快速成長,而造成此鋅鐵氧磁體粉末粒徑大小不均一。因此推測,Fe3O4能否完全轉換成γ-Fe2O3是合成單相且粒徑均一之鋅鐵氧磁體粉末之關鍵因素。
若能使Fe3O4於較低溫即完全氧化成γ-Fe2O3,則可使所生成的γ-Fe2O3粒徑較為均一且更為微細,同時可避免α-Fe2O3的產生,而可有效的與ZnO反應生成鋅鐵氧磁體粉末。本研究藉控制Fe3O4之氧化機構,採用低溫前處理的方式,於低溫(< 450℃)合成一單相且粒徑均一的鋅鐵氧磁體粉末。較佳的前熱處理溫度範圍在300- 400℃之間,超過400℃作熱處理,則會有α-Fe2O3產生。
此外,由中間相的觀察發現,γ-Fe2O3晶粒表面提供了八面體空缺之間隙位置,可讓Zn2+離子直接進入其結構中,使得γ-Fe2O3容易與ZnO反應生成ZnFe2O4。本研究同時建立一γ-Fe2O3與ZnO反應生成逆尖晶石型鋅鐵氧磁體之模式,可對前人的研究結果作一更合理的解釋。所以本研究認為,造成逆尖晶石型鋅鐵氧磁體產生之原因,除了前人所提出的表面積高低影響因素外,從結構的觀點,γ-Fe2O3中間相的產生,才是最根本的影響因素。而γ-Fe2O3粒徑越小,比表面積越高,暴露於其晶粒表面的八面體間隙位置越多,相對的可提供Zn2+佔據的位置亦越多,反應後所獲得的ZnFe2O4晶徑亦越小。所以,當ZnFe2O4晶徑越小或比表面積越大者,越容易合成逆尖晶石型鋅鐵氧磁體,其Zn2+佔據在八面體位置的含量或晶粒表面層Zn含量則越高。
In the nonconventional preparation of spinel ferrite powders, the pyrolytic decomposition of precursors often occurs through multi-stage transformation paths, which involve different metastable intermediate phases. The present investigation deals with the synthesis of nano-sized zinc ferrite powders using the tartrate precursor technique. The focus of this investigation is to study the development of the intermediate phase during the decomposition of precursor, as well as the formation mechanism of zinc ferrite. Accordingly, the nano-sized zinc ferrite powders can be obtained at low-temperature (< 500℃) in this study.
Characterizations of the various experimental products have been conducted as: (i) thermal behavior by DTA/TG, (ii) crystalline phase determined by XRD and TEM method, (iii) crystallite and particle sizes measured by Scherrer formula-XRD powder method, BET surface area diameters, and TEM, and (iv) magnetic properties and electronic structure of Zn conducted by SQUID and XPS techniques.
The experimental results are given as follows:
1.The thermal reaction sequence during the precursor decomposition to synthesize zinc ferrite powders as performed in this work can be noted as follows:
Step 1: Decomposition of the tartrate precursor
Zn1Fe2-tartrate precursor 2/3Fe3O4+ZnO
Step 2: Oxidation of Fe3O4
2/3 Fe3O4 +1/6O2 γ-Fe2O3
Step 3: Formation of inverse spinel Zn-ferrite
γ-Fe2O3+ZnO (Fe3+)A[Zn2+Fe3+]BO2-4
Step 4: Inverse-normal spinel transformation
(Fe3+)A[Zn2+Fe3+]BO2-4 (Zn)A[Fe2]BO2-4
2.The intermediate phase, Fe3O4, could not effectively react with ZnO to synthesize zinc ferrite at low temperature. The key step of preparation of ultrafine zinc ferrite powders by tartrate technique is the preheating process, in which the precursor is thermally treated between 300°and 400℃ for several hours to ensure complete conversion of the Fe3O4 into γ-Fe2O3. Therefore the ultrafine and mono-phase ZnFe2O4 can be obtained at low temperature by preventing the formation of α-Fe2O3 via preheating process.
3.It has been proven that the octahedral sites are preferentially exposed on the spinel surfaces. The γ-Fe2O3 is a cubic spinel, chemical formula of which is (Fe3+)[Fe3+5/3□1/3]O4, where □ stands for the vacancy of cation and distribution on the octahedral sites. Thus the γ-Fe2O3 can provide the cation vacancies on octahedral sites for Zn2+ ions diffusing into the octahedral-structured clusters, and then forming the inverse spinel zinc ferrite. The model of reaction mechanism between γ-Fe2O3 and ZnO is also built-up from the experimental results.
目 錄
中文摘要Ⅰ
英文摘要Ⅲ
目錄Ⅴ
表目錄Ⅸ
圖目錄Ⅹ
第一章 緒論 1
1.1 鋅鐵氧磁體的發展與應用 1
1.2 有機金屬鹽低溫合成ZnFe2O4法 1
1.3 鋅鐵氧磁體粉末之合成機構 2
1.3.1 有機金屬鹽法之反應階段 2
1.3.2 可能產生之中間相 4
1.3.3 α-Fe2O3生成之影響 5
1.3.4 中間相與逆尖晶石型鋅鐵氧磁體生成之關係 5
1.4 研究動機-類構造反應 7
1.5研究目的 8
第二章 理論基礎與前人研究 10
2.1 鐵氧磁體 10
2.1.1 鐵氧磁體分類 10
2.1.2 尖晶石型鐵氧磁體晶體結構 10
2.1.3 鋅鐵氧磁體晶體結構及材料特性 11
2.2 鋅及其他鐵氧磁體粉末之合成 11
2.2.1 傳統固態反應法 11
2.2.2 非傳統合成法 13
2.3 相生成的條件 14
2.4 中間相之結晶結構及相轉換 16
2.4.1 Hematite α-Fe2O3 17
2.4.2 Magnetite Fe3O4 17
2.4.3 Maghemite γ-Fe2O3 18
2.4.4 氧分壓與氧化鐵之相轉換 19
2.4.5 γ- →α-Fe2O3 之相轉換 20
2.4.6 Fe3O4 →γ-Fe2O3 /或α-Fe2O3 之相轉換 21
2.5 相轉換之熱行為分析 23
2.6 鐵氧磁體之磁特性 24
2.6.1 磁矩 24
2.6.2 超交換作用 26
2.6.3 鐵氧磁體之磁結構 27
2.6.4 矯頑磁力 28
第三章 實驗方法與步驟 51
3.1實驗設計 51
3.2 實驗藥品 52
3.3 實驗步驟 52
3.3.1 純鐵酒石酸鹽起始膠體製備 52
3.3.2 鋅-鐵酒石酸鹽起始膠體製備 53
3.4 特性分析 54
3.4.1 熱性質分析 54
3.4.2 Fe2+含量分析 54
3.4.3 X光繞射分析 54
3.4.4 粒徑分析 55
3.4.5 磁性量測 57
3.4.6 XPS分析 57
第四章 酒石酸鐵熱分解之中間相轉換及晶徑變化觀察 60
4.1 酒石酸鐵鹽之熱分析及結晶相變化觀察 60
4.2 等速升溫過程之氧化鐵相轉換與晶徑變化關係 61
4.3 等溫熱處理對氧化鐵相轉換之影響 62
4.4 等溫熱處理之氧化鐵晶徑變化 63
4.5 TEM顯微結構觀察 64
4.6 Zn2+添加對氧化鐵相轉換之影響 65
4.7 結論 66
第五章 氧化鐵中間相生成對合成鋅鐵氧磁體粉末之影響83
5.1 反應中間相生成觀察 83
5.1.1 起始膠體粉末之熱行為分析 83
5.1.2 結晶相生成觀察 83
5.1.3 非化學計量Zn-ferrite析出α-Fe2O3機構之探討 85
5.2 熱處理條件對Fe3O4氧化之影響 87
5.2.1 升溫速率之影響 87
5.2.2 空氣中冷卻之影響 89
5.2.3 合成鋅鐵氧磁體粉末之反應方程式 90
5.3 結晶相晶徑變化之觀察 91
5.4 Fe3O4氧化機構之控制 92
5.4.1 非化學計量Zn-Ferrite產生原因之探討 92
5.4.2 超微粒且化學計量ZnFe2O4粉末之合成 94
5.5 結論 95
第六章 鋅鐵氧磁體粉末生成過程之陽離子分佈研究 118
6.1 鋅鐵氧磁體磁性之產生 118
6.2 鋅鐵氧磁體粉末生成過程之磁性觀察 119
6.3 中間相及其晶徑變化對磁性的影響 119
6.4 XPS表面陽離子佔據位置研究 121
6.4.1 XPS結合能分析 121
6.4.2 Zn-ferrite生成過程之Zn2+離子佔據位置觀察 122
6.4.3 γ-Fe2O3與陽離子反應之模式 124
6.5 結論 125
第七章 總結論 137
第八章 參考文獻 140
自述 154
誌謝 155
表目錄
Table 1-1 Synthesis of Zn-ferrite using the metal-organic precursors technique. 3
Table 2-1 Properties of the ZnFe2O4. 30
Table 2-2 Diffusion rates in metal oxides. 31
Table 2-3 Kinetically influence factors on the phase transformation. 32
Table 2-4 Crystallographic data for iron oxides. 33
Table 2-5 Comparison between normal and inverse spinel structures. 34
Table 2-6 Magnetic properties of single cubic ferrites of the spinel type. 35
Table 3-1 Properties of the reagents used in this study. 52
Table 4-1 Characteristics of calcined powders, the phases, crystallite size from Scherrer formula, grain size from BET-N2, and formation of α-Fe2O3 of samples in Fig. 4-3 67
Table 4-2 The crystallite size from Scherrer formula, the particle size from BET andα-Fe2O3 percentage of samples refer to Fig. 4-4 which isothermal treated at 300, 350, and 400℃. 68
Table 5-1 Characteristics of calcined powders, phases, and crystallite size from the Scherrer formula. 97
Table 5-2 Phases by X-ray phase identification for test samples obtained by various thermal methods. 98
Table 6-1 Magnetic properties of the calcined powders, phases, and crystallite size from the Scherrer formula. 126
Table 6-2 Binding energy of major core line in spinel, different standard compound and this study. 127
圖目錄
Fig. 2-1 The crystal structure of spinel, AB2O4. 36
Fig. 2-2 Formation by counterdiffusion. 37
(a) Formation of MgAl2O4: Counterdiffusion of Mg2+ and Al3+ cations, no anion diffusion (Wagner mechanism); no marker displacement. (b) Formation of MgFe2O4: Counterdiffusion of Mg2+ and Fe2+ cations, no O2- anion diffusion but reduction and oxidation of Fe ions at the respective phase boundaries, which is equivalent to an oxygen transport through the gas phase; marker displacement.
Fig. 2-3 Nickel ferrite formation as a function of firing time. Percent “NiFe2O4” formed versus time of firing at temperatures between 800 and 1200℃. 38
Fig. 2-4 The change in free energy for the reaction A + B→ C + D, where AB* is the activated state. 39
Fig. 2-5 A small spherical nucleus of phase β within a matrix of the parent phase α. The nucleus may have a different composition and/or structure to the matrix; in this case the structure and lattice parameters of the both phases are approximately the same, although their compositions are different. 40
Fig. 2-6 The free energy changes associated with the nucleation of a spherical nucleus, radius r. 41
Fig. 2-7 Illustration of the Ostwald step rule. The direct transformation from state 1 to state 4 involves a large activation energy ΔGa and may be very sluggish. Transformation via a sequence of steps 1→2→3→4 involves smaller activation energies and may be kinetically more favorable. 42
Fig. 2-8 Structure of hematite. 43
(a) Hexagonal close packing of oxygens with cations distributed in the octahedral interstices. Unit cell outlined.
(b) View down the c-axis showing the distribution of Fe ions over a given oxygen layer and the hexagonal arrangement of octahedral. Unit cell outlined.
(c) Arrangement of octahedral. Note their face-sharing.
(d) Ball-and stick model. Unit cell outlined.
(e) O3-Fe-O3-Fe-O3 triplets.
Fig. 2-9 Structure of magnetite. 44
(a)Polyhedral model with alternating octahedral and tetrahedral-octahedra layers.
(b)Ball-and-stick model. Unit cell outlined.
(c)Ball-and-stick model of the arrangement of octahedral and tetrahedra.
Fig. 2-10 Partial pressure of oxygen ( pO2 ) in equilibrium with different iron oxides plotted in terms of pCO2/pCO versus temperature. Partial pressure pO2 = Kp(pCO2/pCO)2, where Kp is the equilibrium constant expressed in partial pressures. 45
Fig. 2-11 Standard free energy of formation for Fe—Fe2O3 system, as a function of temperature and partial pressure of oxygen. 46
Fig. 2-12 Mechanisms for diffusion: thermodynamic equilibrium is reached on the surface and there is diffusion of the cations and the vacancies in order to set up this equilibrium in the whole material. The different coefficients are calculated using the oxidation reaction. The electroneutrality and the preservation of the number of the cell site during surface oxidation are satisfied when considering the other cations in the spinel structure. 47
Fig. 2-13 (a) This suggests how exchange may be effective via an intervening anion with negligible direct overlap and (b) shows the “900 overlap” of d orbitals which may occur directly. 48
Fig. 2-14 Interionic distances and angles in the spinel structure for the different types of lattice site interaction. 49
Fig. 2-15 Magnetic structures of normal and inverse spinels: (a) normal manganese ferrite, MnFe2O4; (b) inverse nickel ferrite, NiFe2O4; (c) normal zinc ferrite, ZnFe2O4. 50
Fig. 3-1 Flow chart of this study. 58
Fig. 3-2 Calibration curve forα-Fe2O3 analysis with 10 % CaF2 as internal standard. 59
Fig. 4-1 Simultaneous DTA-TG curves for Fe-tartrate precursor. The heating rate is 5℃min-1 in air atmosphere. 69
Fig. 4-2 XRD diffraction patterns of Fe-tartrate calcined at (a) 300℃, (b) 350℃, (c) 400℃, (d) 450℃, and (e) 500℃, with a heating rate of 5℃min-1, and then quenched to liquid nitrogen environment. 70
Fig. 4-3 Relationships between the γ- and α-Fe2O3 crystallite sizes, BET-N2 diameter, and the amount of α-Fe2O3 formation (α%, ▲) during γ- to α- phase transformation of calcined powders derived from Fe-tartrate. The crystallite size is calculated with the Scherrer formula - XRD (for Fe3O4 ●, γ-Fe2O3 ◆, and for α-Fe2O3  ), and surface area diameter is with the BET-N2 O. The DTA profile is inserted. 71
Fig. 4-4 The formation ofα-Fe2O3 varying with the duration of isothermal treatments. 72
Fig. 4-5 (a) TEM of the Fe-tartrate calcined at 450℃ and then quenched to liquid nitrogen environment, and (b) the corresponding to α-Fe2O3 diffraction pattern. 73
Fig. 4-6 High resolution electron micrograph of α-Fe2O3. The lattice fringes at 0.37 nm correspond to the (012) spacing, and 0.27 nm correspond to the (104) spacing. 74
Fig. 4-7 Electron diffraction patterns and EDS analysis of the sample calcined at 400℃ with a heating rate of 5℃min-1 and then quenched. The electron diffraction patterns of (a)α-Fe2O3 and (b) defectα-Fe2O3.
75
Continued, (c) Bright-field and (d) dark-field images of α-Fe2O3 and defect α-Fe2O3 particle. 76
Fig. 4-8 (a) Evolution vs temperature of the XRD of the spinel phase of composition Zn/Fe molar ratio = 0.1/2. 77
(b) Evolution vs temperature of the XRD of the spinel phase of composition Zn/Fe molar ratio = 0.2/2. 78
(c) Evolution vs temperature of the XRD of the spinel phase of composition Zn/Fe molar ratio = 0.5/2. 79
(d) Evolution vs temperature of the XRD of the spinel phase of composition Zn/Fe molar ratio = 0.8/2. 80
(e) Evolution vs temperature of the XRD of the spinel phase of composition Zn/Fe molar ratio = 1/2. 81
Fig. 4-9 Effect of Zn2+ contents on formation ofα-Fe2O3 in Znx-Fe2 ferrites by DTA peak temperatures. ●, Present study; ◇, Gillot et al.; △, Dupre et al.; □, Yamaguchi et al.. 82
Fig. 5-1 DTA-TGA curves for Zn-Fe tartrates. The heating rate is 5℃min-1 in air atmosphere. 99
Fig. 5-2 Fe2+ contents of the spinel powders as a function of temperatures. The heating rate is 5℃min-1 in air. Samples are quenched in the liquid nitrogen environment. 100
Fig. 5-3 XRD profiles and colors of Zn-ferrite powders obtained with a heating rate of 5℃min-1 to temperatures. (a) 300℃, (b) 325℃, (c) 350℃, (d) 400℃, (e) 550℃, and (f) 600℃, and quenched at liquid nitrogen environment. 101
Fig. 5-4 TEM micrograph of the sample is amorphous which calcined at 275℃, and then quenched at liquid nitrogen environment. (a) Bright-field image and (b) diffraction pattern of the region (a). 102
Fig. 5-5 HR-TEM of the particles of Fe3O4 (a) and γ-Fe2O3 (b). The lattice fringes at 0.297 nm correspond to the (220) spacing of Fe3O4, and 0.480 nm correspond to the (111) spacing of γ-Fe2O3. 103
Fig. 5-6 EDS analysis by TEM of samples calcined at (a) 350℃, (b) 400℃, and (c) 600℃. 104
Fig 5-7 TEM dark fields of (a) γ-Fe2O3 and (b) α-Fe2O3. Corresponding diffraction patterns and EDS analysis showing substantial amounts of presence Zn in the γ- and α- particles. 105
Fig. 5-8 Schematic free energy-composition for the system Zn-ferrite powders in the synthesis of ZnFe2O4-Fe2O3 compositions. NSZF: nonstoichiometric Zn-ferrite phase. 106
Fig. 5-9 HR-TEM image of the Zn-ferrite crystal, showing the nucleation behavior of precipitate labeled by A, and the Moiré patterns indicated by B. 107
Fig.5-10 (a) TGA traces for Zn-Fe tartrate precursors with different heating rates for 2-20℃min-1 in air, and showing the influence of heating rate on Fe3O4 oxidation behavior. 108
Fig.5-10 (b) DTA traces for Zn-Fe tartrate precursors with different heating rates for 2-20℃min-1 in air. 109
Fig. 5-11 XRD profiles of spinel Zn-ferrite powders obtained with a heating rate of 20℃min-1 to temperatures. (a) 450℃, (b) 550℃, (c) 650℃, and (d) 730℃, and quenched in liquid nitrogen environment. 110
Fig. 5-12 XRD profiles of spinel Zn-ferrite powders obtained with a heating rate of 5℃min-1 to temperatures: (a) 300℃, (b) 350℃, (c) 400, (d) 450, (e) 500, (f) 600 and (g) 650℃, and quenched in air atmophere.
111
Fig. 5-13 TEM micrographs are showing the presence of coarse-grained α-Fe2O3 crystallites in Zn-ferrite powders. (a) The bright-field image of α-Fe2O3 particle, (b) the bright-field image of α-Fe2O3 particle and corresponding diffraction pattern with zone axis: [21-1]. 112
Fig. 5-14 Schematic diagram for the formation mechanism of non-stoichiometric Zn-ferrite (a) and (b), and stoichiometric Zn-ferrite (c). 113
Fig. 5-15 XRD patterns of the samples anneled at (a) 300℃, (b) 350℃, (c) 400℃, and (d) 450℃ for 4 hrs. 114
Fig. 5-16 XRD profiles of the pre-heat treatment sample demonstrating the possibility of eliminatingα-Fe2O3 formation. Samples pre-thermal treated at temperatures shown in Fig. 5-15 and then heating to 650℃.
115
Fig. 5-17 EDS analysis by TEM of sample anneled at 350℃ for 4 hrs. 116
Fig. 5-18 The TEM micrographs of Zn-ferrite powders obtained heating to 450℃, then quenched at liquid nitrogen environment. (a) as receive with a heating rate of 5℃min-1; (b) pre-thermal treated at 350℃ for 4 hrs with a heating rate of 5℃min-1. 117
Fig. 6-1 Magnetic saturation (Ms) dependence of occupied fraction of Zn2+ ion at octahedral B-site. Cation distribution assumed to be (Zn1-xFex)A[ZnxFe2-x]BO4, 0≦x≦1. Number of site parameters is, therefore, only one. 128
Fig. 6-2 Magnetic saturation (Ms) and intrinsic coercivity (iHc) versus temperature for samples calcined at different temperatures measured at an applied field of 15 kOe in room temperature. 129
Fig. 6-3 TEM micrographs of the sample obtained at 350℃. (a) Bright-field image and (b) Dark-field image. 130
Fig. 6-4 HR-TEM showing segments of stacking faults are formed in Fe3O4. The stacking faults are formed when a Fe3O4 particle partial oxidized at crystal surface. 131
Fig. 6-5 A two-dimensional lattice image showing the detailed structure of local distortions within Zn-ferrite crystal imaged into [112] projection, and the cause of distortion due to the stress of reaction of γ-Fe2O3 with ZnO. The arrows point to the lattice distortions. 132
Fig. 6-6 XPS surface elements analysis of samples calcined at different temperatures. The Zn-to-Fe (Zn/Fe) molar ratios are plotted against temperature. 133
Fig. 6-7 XPS spectra of Zn 2p3/2 levels for calcined samples as a function of temperature. Peak assignments are: ZnO at 300℃, inverse spinel at 400℃, and normal spinel at 500℃. 134
Fig. 6-8 XPS spectra of O 1s levels for calcined samples as a function of temperature. 135
Fig. 6-9 Schematic diagram for the Zn2+ incorporating into the surface vacant sites of the (1 1 0) plane of γ-Fe2O3. (a) the surface octahedral position ofγ-Fe2O3 and the (1 1 0) plane of γ-Fe2O3 (c); (b) and (d) the incorporated Zn2+ ion located at octahedral position, and then O2- ion capping on top of the Zn2+ ion. 136
參考文獻
1. H. H. Hamdeh, J. C. Ho, S. A. Oliver, R. J. Willey, J. Kramer, Y. Y. Chen, S. H. Lin, Y. D. Yao, M. Daturi, and G. Busca, “Ferrimagnetic zinc ferrite fine powders”, IEEE Trans. Magn., 31 (1995) 3808-3810.
2. T. Sato, K. Haneda, M. Seki, and T. Iijima, “Morphology and magnetic properties of ultrafine ZnFe2O4 particles ”, Appl. Phys. A, 50 (1990) 13-16.
3. B. Jeyadevan, K. Tohji, and K. Nakatsuka, “Structure analysis of coprecipitated ZnFe2O4 by extended X-ray-absorption fine structure”, J. Appl. Phys., 76 (1994) 6325-6327.
4. J. Chen, G. Srinivasan, S. Hunter, V. S. Babu, and M. S. Seehra, “Observation of superparamagnetism in rf-sputtered films of zinc ferrite”, J. Magn. Magn. Mater., 146 (1995) 291-297.
5. K. Tanaka, M. Makita, Y. Shimizugawa, K. Hirao, and N. Soga, “Structure and high magnetization of rapidly quenched zinc ferrite”, J. Phys. Chem. Solids, 59 (1998) 1611-1618.
6. P. Druska, U. Steinike and V. Šepelák “Surface structure of mechanically activated and of mechanosynthesized zinc ferrite”, J. Solid State Chem., 146 (1999) 13-21.
7. V. Šepelák, U. Steinike, D. Chr. Uecker, S. Wiβmann, and K. D. Becker, “Structural Disorder in Mechanosynthesized zinc ferrite”, J. Solid State Chem., 135 (1998) 52-58.
8. T. Sato, K. Haneda, T. Iijima, and M. Seki, Ferrites, Proc. Sixth Inter. Conf. On Ferrites, The Japan Society of Powder and Powder Metallurgy, Tokyo and Kyoto, (1992) p. 984.
9. X. Li, G. Lu, and S. Li, “Synthesis and characterization of fine particle ZnFe2O4 powders by a low temperature method”, J. Alloys and Comp., 235 (1996) 150-155.
10. M. A. Ahmed, L. Alonso, J. M. Palacios, C. Cilleruelo, J. C Abanades, “Structural changes in zinc ferrites as regenerable sorbents for hot coal gas desulfurization”, Solid State Ionics, 138 (2000) 51-56.
11. T. Kodama, M. Tabata, K. Tominaga, T. Yoshida, and Y. Tamaura, “Decomposition of CO2 and CO into carbon with active wüstite prepared from Zn(Ⅱ)-bearing ferrite”, J. Mater. Sci., 28 (1993) 547-552.
12. S. Komarneni, M. Tsuji, Y. Wada, and Y. Tamaura, “Nanophase ferrite for CO2 greenhouse gas decomposition”, J. Mater. Chem., 7 (1997) 2339-2340.
13. Z. H. Yuan and L. D. Zhang, “Synthesis, characterization and photocatalytic activity of ZnFe2O4/TiO2 nanocomposite”, J. Mater Chem., 11 (2001) 1265-1268.
14. F. J. Guaita, H. Beltrán, E. Cordoncillo, J. B. Carda, and P. Escribano, “Influence of the precursors on the formation and the properties of ZnFe2O4”, J. Eur. Ceram. Soc., 19 (1999) 363-372.
15. J. J. Ritter, and P. Maruthamuthu, “Synthesis of NiFe2O4 by metal-organo complex method”, J. Mater. Synth. Proc., 3 (1995) 331-337.
16. B. S. Randhawa, “Preparation Of ferrites from the therolysis of transition metal ferrioxalate precursor”, J. Mater. Chem., 10 (2000) 2847-2852.
17. C. D. E. Lakeman and D. A. Payne, “Sol —gel processing of electrical and magnetic ceramics”, Mater. Chem. Phys., 38 (1994) 305-324.
18. Y. Xia, T. Armstrong, F. Prado, and A. Manthiram, “Sol-gel synthesis, phase relationships, and oxygen permeation properties of Sr4Fe6-xCoxO13+δ(0≦x≦3)”, Solid State Ionic, 130 (2000) 81-90.
19. A. Clearfiled, A. M. Gadalla, W. H. Marlow, and T. W. Livingston, “Synthesis of ultrafine grain ferrites”, J. Am. Ceram. Soc., 72 (1989) 1789-1792.
20. M. Kumazawa, H. M. Cho, and E. Sada, “Hydrothermal synthesis of barium ferrite fine particles from geothite”, Chapman & Hall, (1993) p. 5247-5250.
21. P. Ravindranathan and K. C. Patil, “A low temperature path to the preparation of ultrafine ferrite”, Am. Ceram. Soc. Bull., 66 (1987) 688-692.
22. T. T. Srinivasan, P. Ravindranathan, L. E. Cross, R. Roy, R. E. Newnham, S. G. Sankar, and K. C. Patil, “Studies on high-density nickel zinc ferrites and its magnetic properties using novel hydrazine precursors”, J. Appl. Phys., 63 (1988) 3789-3791.
23. V. Moye, K. S. Rane and V. N. Kamat Dalal, “Optimization of synthesis of nickel-zinc-ferrite from oxalates and oxalato hydrazinate precursors”, J. Mater. Sci.: Mater. Electr., 1 (1990) 212-218.
24. K. Suresh and K. C. Patil, “Combustion synthesis and properties of fine particle Li-Zn ferrites”, J. Mater. Sci. Lett., 14 (1995) 1074-1077.
25. N. S. Gajbhiye, U. Bhattacharya, V. S. Darshane, “Thermal decomposition of znic-iron citrate precursor”, Thermochim. Acta, 264 (1995) 219-230.
26. Y. S. Cho, V. L. Burdick, and R. W. Amarakoon, “Synthesis of nanocrystalline lithium zinc ferrites using polyacrylic acid, and their initial densification”, J. Am. Ceram. Soc., 82 (1999) 1416-1420.
27. J. L. Martin de Vidales, A. López-Delgado, E. Vila, And F. A. López, “The effect of the starting solution on the physico-chemical properties of zinc ferrite synthesized at low temperature”, J. Alloys Compd., 287 (1999) 276-283.
28. Z. Wu, M. Okuya, and S. Kaneko, “Spray pyrolysis deposition of zinc ferrite films from metal nitrates solutions”, Thin Solid Films, 385 (2001) 109-114.
29. K. Matsumoto, K. Yamaguchi and T. Fujii, “Preparation of Bismuth-substituted yttrium iron garnet powders by the citrate gel process”, J. Appl. Phys., 69 (1991) 5918-5920.
30. K. Haneda, C. Miyakawa and K. Goto, “Preparation of small particles of SrFe12O19 with high coercity by ydrolysis of metal-organic complexs”, IEEE Trans. Magn., Mag-23 (1987) 3134-3136.
31. X. Batlk, X. Obradors, M. Medarde, J. Rodríguez-Carvajal, M. Pernet and M. Vallet-Regí, “Surface spin canting in BaFe12O19 fine particles”, J. Magn. Magn. Mater., 124 (1993) 228-238.
32. W. Zhong, W. Ding, N. Zhang, J. Hong, Q. Yan and Y. Du, “Key step in synthesis of ultrafine BaFe12O19 by sol-gel technique”, J. Magn. Magn. Mater., 168 (1997) 196-202.
33. W. Zhong, W. Ding, Y. Jiang, N. Zhang, J. Zhang, Y. Du, and Q. Yan, “Preparation and magnetic properties of barium hexaferrite nanoparticles produced by the citrate process”, J. Am. Ceram. Soc., 80 (1997) 3258-3262.
34. Č. Jovalekić, M. Zdujić, A. Raaković and M. Mitrić, “Mechanochemical synthesis of NiFe2O4 ferrite”, Mater. Letters, 24 (1995) 365-368.
35. O. Muller, R. Wilson, H. Colijn, and W. Krakow, “δ-FeO(OH) and its solutions: Part 3 A study of the thermal decomposition”, J. Mater. Sci., 15 (1980) 959-973.
36. N. Millot, S. Begin-Colin, P. Perriat, and G. Le Caër, “Structure, cation distribution, and properties of nanocrystalline Titanomaghetites obtained by mechanosynthesis: Comparison with soft chemistry”, J. Solid State Chem., 139 (1998) 66-78.
37. J. M. Yang, W. J. Tsuo, and F. S. Yen, “Preparation of ultrafine nickel ferrite powders using Mixed Ni and Fe tartrates”, J. Solid State Chem., 145 (1999) 50-57.
38. J. M. Yang, W. J. Tsuo, and F. S. Yen, “Characterization of thermal behavior of Li-Fe-tartrate gels (Molar ratio Li/Fe≦1/5)”, J. Solid State Chem., 160 (2001) 100-107.
39. T. Yamaguchi, and T. Kimura, “Kinetic studies on the precipitation of hematite from iron-rich spinel solid solutions”, J. Am. Ceram. Soc., 59 (1976) 333-335.
40. F. F. Y. Wang, K. M. Krishnan, D. E. Cox, and T. G. Reynolds, “Compositional and structural studies of a MnZn ferrite under different processing conditions”, J. Appl. Phys., 52 (1981) 2436-2438.
41. Y. Murakami, A. Sawata and Y. Tsuru, “Crystallization behavior of amorphous solid solutions and phase separation in the Cr2O3-Fe2O3 system”, J. Mater. Sci., 34 (1999) 951-955.
42. D. Sriram, R. L. Snyder and V. R. W. Amarakoon, “Nanophase copper ferrite using an organic gelation technique”, Mat. Res. Soc. Symp. Proc., 457 (1997) 81-87.
43. J. Z. Jiang, P. Wynn, S. Mørup, T. Okada, and F. J. Berry, “Magnetic structure evolution in mechanically milled nanostructured ZnFe2O4 particles”, NanoStrucred Mater., 12 (1999) 737-740.
44. C. N. Chinnasamy, A. Narayanasamy, N. Ponpandian, and K. Chattopadhyay, “The influence of Fe3+ ions at tetrahedral sites on the magnetic properties of nanocrystalline ZnFe2O4”, Mater. Sci. Eng., A 304-306 (2001) 983-987.
45. K. Tkáčová, V. Šepelák, N. Števulová, and V. V. Boldyrev, “Structure-reactivity study of mechanically activated zinc ferrite”, J. Solid State Chem., 123 (1996) 100-108.
46. V. Šepelák, S. Wiβmann, K. D. Becker, “Magnetism of nanostructured mechanically activated and mechanosynthesized spinel ferrite”, J. Magn. Magn. Mater., 203 (1999) 135-137.
47. W. Kim and F. Saito, “Mechanochemical synthesis of zinc ferrite from zinc oxide and α-Fe2O3”, Powder Technol., 114 (2001) 12-16.
48. Č. Jovalekić, M. Zdujić, A. Radaković, and M. Mitrić, “Mechanochemical synthesis of NiFe2O4 ferrite”, Mater. Lett., 24 (1995) 365-368.
49. N. Randrianantoandro, A. M. Mercier, M. Hervieu, and J. M. Grenèche, “Direct phase tranformation from hematite to maghemite during high energy ball milling”, Mater. Lett., 47 (2001) 150-158.
50. A. R. West, in Solid State Chemistry and Its Applications, Chapter 12, John Wiley & Sons, (1986) p.442-443.
51. T. Sano and Y. Tamaura, “Synthesis of (Li, Mn) ferrites by reaction of ultrafineγ-Fe2O3 with LiMn2O4 spinel at 650℃”, Mater. Res. Bull., 34 (1999) 389-401.
52. K. S. Rane, V. M. S. Verenkar, R. M. Pednekar, P. Y. Sawant, “Hydrazine method of synthesis of γ-Fe2O3 useful in ferrite preparation. Part Ⅲ-study of hydrogen iron oxide phase in γ-Fe2O3”, J. Mater. Sci.: Mater Elect., 10 (1999) 121-132.
53. A. Goldman, Modern Ferrite Technology, New York: Van Nostrand Reinhold, (1990) p.21-44.
54. G. Winkler, in Magnetic Properties of Materials, J. Smit (ed.), McGraw-Hill, New York, (1971) p.20-63.
55. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, in Introduction to Ceramics, Ch. 19, 2nd, John Wiley & Sons, New York, (1991).
56. B. D. Cullity, in Introduction to Magnetic Materials, Addison-Wesley, Reading, MA, (1972).
57. S. Chikazumi, in Physics of Ferromagnetism, Vol. I, Syokabo, Tokyo, (1978) p. 222.
58. J. M. Hastings and F. F. Roberts, “Neutron diffraction studies of zinc ferrite and nickel ferrite”, Rev. Mod. Phys., 25 (1953) 114-119.
59. C. Wagner, “Uber den mechanismus der bildung von ionenverbindungen höherer ordnung (Doppelsalze, Spinelle, Silikate)”, Z. Phys. Chem., B34 (1936).
60. P. Reijnen, The formation of ferrites from the metal oxides, in Science of Ceramics, Vol. 3, A. Stewart (ed.), Academic Press, New York, (1967) p. 171.
61. S. Ogawa and Y. Nakagawa, “Cation diffusion coefficients and vacancy densities in Mn-Zn-ferrites”, J. Phys. Soc. Japan, 23 (1967) 79-184.
62. R. Freer, “Bibliography sel-diffusion and impurity diffusion in oxides”, J. Mater. Sci., 15 (1980) 803-824.
63. L. C. F. Blackman, “On the formation of Fe2+ in the system MgO-Fe2O3-MgFe2O4 at high temperatures”, J. Am. Ceram. Soc., 42 (1959) 143-145.
64. D. Elwell, R. Parker, and C. J. Tinsley, “The formation of nickel ferrite”, Solid State Comm., 4 (1966) 69-71.
65. P. Reijnen, The formation of ferrites from the metal oxides, in Science of Ceramics, Vol. 3, A. Stewart (ed.), Academic Press, New York, (1967) p. 245-261.
66. P. Reijnen, Investigation into solid state reactions and equilibria in the system MgO-FeO-Fe2O3, Fifth Intern. Symp. Reactivity Solids, Munich, 1964, Elsevier, Amsterdam, (1965) p. 562-571.
67. S. L. Blum and P. C. Li, “Kinetics of nickel ferrite formation”, J. Am. Ceram. Soc., 44 (1961) 611-617.
68. G. M. Chow and K. E. Gonsalves, in Nanometerials: Synthesis, Properties and Applications, A. S. Edelstein and R. C. Cammarata ed., Ch. 3, Philadelphia, PA: Institute of Physics Pub. Bristol, (1996).
69. N. Ichinose, Y. Ozaki, and S. Kashū, in Superfine Particle Technology, Ch. 3 and Ch. 4, Springer-Verlag London Limited, (1992).
70. A. Putnis, in Introduction to Mineral Sciences, Ch. 10 and Ch. 11, Cambridge University Press, (1992).
71. C. W. Chen, in Magnetism and Metallurgy of Soft Magnetic Materials, Dover, New York, (1986) p. 219-232.
72. R. L. Blake, R. E. Hessevick, T. Zoltai, and L. W. Finger, “Refinement of the hematite structure”, Am. Min., 51 (1966) 123-129.
73. R. M. Conell and U. Schwertmann, in The Iron Oxides, Structure, Properties, Occurrence and Uses, VCH, Weinheim, (1996).
74. E. Wolska and U. Schwertmann, “Nonstoichiometric structures during dehydroxylation of goethite”, Z. Kristallogr., 189 (1989) 223-237.
75. E. Wolska and U. Schwertmann, “Selective X-ray line broadening in goethite-derived hematite phase”, Phys. Stat. Sol., A114 (1989) K11-K16.
76. W. H. Bragg, “The structure of magnetite and the spinels”, Nature 95 (1915) 561.
77. S. Nishikawa, “The structure of some crystals of the spinel group”, Proc. Math. Phys. Soc. Tokyo, 8 (1915) 199-209.
78. R. J. Hill, J. R. Craig, and G. V. Gibbs, “Systematics of the spinel structure type”, Phys. Chem. Min., 4 (1979) 317-339.
79. G. A. Waychunas, in Crystal chemistry of irons and oxyhydroxides. D. H. Lindsley (ed.), Oxide minerals petrolic and magnetic significance. Reviews in Mineralogy, Vol. 25, Min. Soc. Am., (1991) p.11-68.
80. W. Feitknecht, “Einfluß der teilchengröße auf den mechanismus von festkörperreaktionen”, Rev. Pure Applied Chem., (1964) 423-440.
81. J. D. Bernal, D. R. Dasgupta, A. L. Mackay, “The oxides and hydroxides of iron and their structural interrelationships”, Clay Min. Bull., 4 (1959) 15-30.
82. M. P. Morales, C. Pecharroman, C. T. Gonzalez, and C. J. Serna, “Structral characteristics of uniform γ-Fe2O3 particles with different axial (length/width) ratios”, J. Solid State Chem., 108 (1994) 158-163.
83. M. P. Morales, C. J. Serna, F. Bødker, and S. Mørup, “Spin canting due to structural disorder in maghemite”, J. Phys.: Condens. Matter, 9 (1997) 5461-5467.
84. W. Feitknecht and K. J. Gallagher, “Mechanisms for the oxidation of Fe3O4”, Nature, 228 (1970) 548-549.
85. C. J. Goss, “Saturation magnetization, coercivity and lattice parameter changes in system Fe3O4-γ-Fe2O3, and their relationship to structure”, Phys. Chem. Min., 16 (1988) 164-171.
86. P. B. Braun, “A superstructure in spinels”, Nature, 170 (1952) 1123.
87. T. W. Swaddle and P. Oltmann, “Kinetics of the magnetite — maghemite — hematite transformation, with special reference to hydrothermal systems”, Can. J. Chem., 58 (1980) 1763-1772.
88. A. K. Nikumbh, A. D. Aware, and P. L. Sayanekar, “Electrical and magnetic properties of γ-Fe2O3 synthesized from ferrous tartrate one and half hydrate”, J. Magn. Magn. Mater., 114 (1992) 27-34.
89. I. David and A. J. E. Welch, “The oxidation of magnetite and related spinels”, Trans. Faraday Soc., 52 (1956) 1642-1650.
90. L. S. Darken and R. W. Gurry, J. Am. Chem. Soc., 68 (1946) 798.
91. L. S. Darken R. W. Gurry, Physical Chemistry of Metals, McGraw-Hill, New York, (1953).
92. K. Egger and W. Feitknecht, “Über die oxidation von Fe3O4 zu γ- und α-Fe2O3. Die differenzthermoanalytische (DTA) and thermogravimetrische (TG) verfolgung des reaktionsablaufes an künstlichen formen von Fe3O4”, Helv. Chim. Acta, 45 (1962) 2042-2057.
93. W. Feitknecht and U. Mannweiler, “Der mechanismus der umwandlung von γ-zu α-eisensesquioxid”, Helv. Chim. Acta, 50 (1967) 570-581.
94. P. S. Sidhu, “Transformation of trace element-substituted maghemite to heamatite”, Clays Clay Min., 36 (1988) 31-38.
95. E. Tronc, J. P. Jolivet, and J. Livage, “Mössbauer investigation of the γ-→α-Fe2O3 transformation in small particles”, Hyperfine Interactions, 54 (1990) 737-740.
96. S. Grimm, T. Stelzner, J. Leuthäußer, S. Barth, K. Heide, “Particle size effects on the thermal behaviour of maghemite synthesized by flame pyrolysis”, Therm. Acta, 300 (1997) 141-148.
97. S. Kachi, K. Momiyama and S. Shimizu, “An Electron Diffraction Study and a Theory of the Transformation from γ-Fe2O3 to α-Fe2O3”, J. Phys. Soc. Japan., 18 (1963) 106-116.
98. P. Ayyub, M. S. Multani, M. Barma, V R Palkar, and R Vijayaraghavan, “Size-induced structural phase transitions and hyperfine properties of microcrystalline Fe2O3”, J. Phys. C: Solid State Phys., 21 (1988) 2229-2245.
99. M. S. Multani and P. Ayyub, “Size and pressure driven phase transitions”, Condensed Matter News, 1 (1991) 25-27.
100. 溫惠玲,2000,“由Boehmite製得之氧化鋁粉末的θ→α-Al2O3相轉換”,國立成功大學資源工程所博士論文。
101. X. Ye, D. Li, Z. Jiao, and L. Zhang, “Thermal stability of nanocrystalline maghemite Fe2O3”, J. Phys. D: Appl. Phys., 31 (1998) 2739-2744.
102. K. J. Gallagher, W. Feitknecht, and U. Mannweiler, “Mechanism of oxidation of magnetite toγ-Fe2O3”, Nature, 217 (1968) 1118-1121.
103. B. Gillot, A. Rousset, and G. Dupre, “Influence of crystallite size on the oxidation kinetics of magnetite”, J. Solid State Chem., 25 (1978) 263-271.
104. U. Colombo, G. Fagherazzi, F. Gazzarrini, G. Lanzavecchia, and G. Sironi, “Mechanism of low temperature oxidation of magnetites”, Nature, 219 (1968) 1036-1037.
105. W. Feitknecht and K. J. Gallagher, “Mechanisms for the oxidation of Fe3O4”, Nature, 228 (1970) 548-549.
106. P. S. Sidhu, R. J. Gilkes, and A. M. Posner, “Mechanism of the low temperature oxidation of synthetic magnetites”, J. Inorg. Nucl. Chem., 39 (1977) 1953-1958.
107. P. Periat and B. Gillot, “A model for coupled diffusion reactions in Mn-Zn ferrites. Generalization of the Ficks''s first law”, Solid State Ionics, 67 (1993) 35-43.
108. F. Brailsford, in Physical Principles of Magnetism, van Nostrand, London, (1966) p. 123, 212, 216, and 90-91.
109. P. W. Anderson and H. Hasegawa, “Consideration on double exchange”, Phys. Rev., 100 (1955) 675.
110. C. Kittel, in Introduction to Solid State Physics, 6th, John Wiley & Sons, New York, (1991) p.61, p.404.
111. Z. J. Zhou and J. J. Yan, “Sputtering iron oxide films by a water vapor process”, J. Magn. Magn. Mater., 115 (1992) 87-98.
112. R. S. de Biasi and T. C. Devezas, “Anisotropy field of small magnetic particles as measured by resonance”, J. Appl. Phys., 49 (1978) 2466-2469.
113. R. S. de Biasi and T. C. Devezas, “Shape anisotropy of ultrafine magnesium ferrite precipitates”, J. Magn. Magn. Mater., 35 (1983) 121-122.
114. A. I. Vogel, A Textbook of Quantitative Inorganic Analysis, Longmans, New York, (1961) p.308.
115. B. D. Cullity, in Element of X-ray Diffraction, 2nd, Addison-Wesley Inc., London, 1978.
116. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, in Introduction to Ceramics, 2nd, John Wiley & Sons, New York, (1991) p.61-63.
117. P. A. Badkar and J. E. Bailey, “The mechanism of simultaneous sintering and phase transformation in alumina”, J. Mater. Sci., 11 (1976) 1794-1706.
118. P. C. Hayes and P. Grieveson, “Microstructural changes on the reduction of hematite to magnetite”, Metall. Trans. B, 12B (1981) 579-587.
119. Y. Lin, W. Zhu, O. K. Tan, and Y. Shen, “Structural and gas sensing properties of ultrafine Fe2O3 prepared by plasma enhanced chemical vapor deposition”, Mater. Sci. Eng. B, 47 (1997) 171-176.
120. B. Gillot, R. M. Benloucif, A. Rousset, “A study of infrared absorption in the oxidation of Zinc-substituted magnetites to defect phase γ and hematite”, J. Solid State Chem., 39 (1981) 329-336.
121. G. Dupre, A. Rousset, and P. Mollard, “Etude des solutions solides entre le sesquioxyde de fer cubique γ-Fe2O3 et le ferrite de zinc ZnFe2O4 ”, Mater. Res. Bull., 11 (1976) 473-476.
122. K. S. Rane, V. M. S. Verenkar, and P. Y. Sawant, “Hydrazine method of synthesis of γ-Fe2O3 useful in ferrite preparation. Part Ⅳ-preparation and characterization of magnesium ferrite, MgFe2O4 fromγ-Fe2O3 obtained from hydrazinated iron oxyhydroxides and iron(Ⅱ) carboxylato — hydrazinates”, J. Mater. Sci.: Mater Elect., 10 (1999) 133-140.
123. M. V. Cabañas, M. Vallet-Regí, M. Labeau, and J. M. González-Calbet, “Spherical iron oxide particles synthesized by an aerosol technique”, J. Mater. Res., 8 (1993) 2694-2701.
124. J. G. Li, T. Ikegami, J. H. Lee, T. Mori, and Y. Yajima, “A wet-chemical process yielding reactive magnesium aluminate spinel (MgAl2O4) powder”, Ceramics International, 27 (2001) 481-489.
125. C. G. Levi, “Metastability and microstructure evolution in the synthesis of inorganics from frecusors”, Acta Mater., 46 (1998) 787-800.
126. J. W. Edington, in Practical Election Microscopy in Materials Science-Interpretation of Transmission Electron Micrographs, Vol. 3, N. V. Philips’ Gloeilampenfabrieken, Eindhoven, (1975) p.80-84.
127. M. L. Balmer, F. F. Lange, and C. G. Levi, “Metastable phase selection and partitioning for Zr(1-x)AlxO(2-x/2) materials synthesized with liquid precursors”, J. Am. Ceram. Soc., 77 (1994) 2069-2075.
128. M. L. Balmer, F. F. Lange, V. Jayaram, and C. G. Levi, “Development of nano-composite microstructures in ZrO2-Al2O3 via the solution precursor method”, J. Am. Ceram. Soc., 78 (1995) 1489-1494.
129. A. Putnis and J. D. C. McConnel, in Principles of Mineral Behaviour-(Geoscience Texts; Vol. 1), Elsevier, New York, (1980) p.197-228.
130. B. Gillot, “DTA curves of selective oxidation of submicrometer mixed valency spinels: Data table for the oxidation temperature of transition metals and its relation to the cation-oxygen distance”, J. Solid State Chem., 113 (1994) 163-167.
131. M. Laarj, S. Kacim, and B. Gillot, “Cationic distribution and oxidation mechanism of trivalent manganese ions in submicrometer MnxCoFe2-xO 4 spinel ferrites”, J. Solid State Chem., 125 (1996) 67-74.
132. B. S. Hemingway, “Thermodynamics properties for bunsenite, NiO, magnetite, Fe3O4 and hematite, Fe2O3, which comments on selected oxygen buffer reactions”, Amer. Mineral., 75 (1990) 781-790.
133. C. Laberty and A. Navrotsky, “Energetics of stable and metastable low-temperature iron oxides and oxyhydroxides”, Geocim. Cosmochim. Acta, 62 (1998) 2905-2913.
134. S. Fritsch and A. Navrotsky, “Thermodynamic properties of manganese oxides”, J. Amer. Ceram. Soc., 79 (1996) 1761-1768.
135. E. Tronc, J. P. Jolivot, “Preparation of γ-Fe2O3 particles”, in Nanophase materials, synthesis, properties, applications, G. C. Hadjipanayis and R. W. Siegel, Kluwer (ed.), Academic Publishers, Boston, (1993) p. 21-28.
136. T. Kamiyama, K. Haneda, T. Sato, S. Ikeda, and H. Asano, “Cation distribution in ZnFe2O4 fine particles studied by neutron powder diffraction”, Solid State Comm., 81 (1992) 563-566.
137. H. H. Hamdeh, J. C. Ho, S. A. Oliver, R. J. Willey, G. Oliveri, and G. Busca, “Magnetic properties of partiall-inverted zinc ferrite aerogel powders”, J. Appl. Phys., 81 (1997) 1851-1857.
138. M. R. Anantharaman, S. Jagatheesan, K. A. Malini, S. Sindhu, A. Narayanasamy, C. N. Chinnasamy, J. P. Jacobs, S. Reijne, K. Seshan, R. H. H. Smits, and H. H. Brongersma, “On the magnetic properties of ultra-fine zinc ferrite”, J. Magn. Magn. Mater., 189 (1998) 83-88.
139. G. F. Goya, H. R. Rechenberg, M. Chen and W. B. Yelon, “Magnetic irreversibility in ultrafine ZnFe2O4 particles”, J. Appl. Phys., 87 (2000) 8005-8007.
140. M. T. Clark, and B. J. Evans, “Enhanced magnetization and cation distributions in nanocrystalline ZnFe2O4: A conversion electron Mössbauer spectroscopic investigation”, IEEE Trans. On Mag., 33 (1997) 3745-3747.
141. T. Sato, T. Iijima, M. Seki, and N. Inagaki, “Magnetic properties of ultrafine ferrite particles”, J. Magn. Magn. Mater., 65 (1987) 252-256.
142. E. Kester, B. Gillot, and Ph. Tailhades, “Analysis of the oxidation process and mechanical evolution in nanosized copper spinel ferrite. Role of stresses on the coercivity”, Mater. Chem. Phys., 51 (1997) 258-264.
143. H. B. Landoulsi and P. Vergnon, “Magnetic moment ofγ-Fe2O3 microcrystals: morphological and size effect”, J. Mater. Sci., 18 (1983) 3399-3403.
144. V. S. Zaitsev, D. S. Filimonov, I. A. Presnyakov, R. J. Gambino, and B. Chu, “Physical and chemical properties of magnetite and magnetite-polymer nanoparticles and their colloidal dispersions”, J. Colloid. Interface Sci., 212 (1999) 49-57.
145. M. Langlet and J. C. Joubert, “”, IEEE Trans. Magn., 24 (1988) 1691.
146. J. P. Jacobs, A. Maltha, J. G. H. Reintjes, J. Drimal, V. Ponec, and H. H. Brongersma, “The surface of catalytically active spinels”, J. Catal., 147 (1994) 294-300.
147. I. Mohai, J. Szépvölgyi, I. Bertóti, M. Mohai, J. Gubicza, and T. Ungár, “Thermal plasma synthesis of zinc ferrite nanopowders”, Solid State Ionics, 141-142 (2001) 163-168.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊