|
1. Holbrook, M. T., "Chlorocarbons and chlorohydrocarbons: carbon tetrachloride". in: Kirk-Othmer encyclopedia of chemical technology, pp. 1062-1072, Vol.5, John Wiley and Sons, 1993. 2. Lyons, E. H. and Dickinson, R. G., "The Photo-oxidation of Liquid Carbon Tetrachloride" J. Am. Chem. Soc. Vol.57, pp.443-446, 1935. 3. Fouw, J. d., "Carbon tetrachloride", Geneva : World Health Organization, 1999. 4. Burdeniuc, J. and Crabtree, R. H., "Mineralization of chlorofluorocarbons and aromatization of saturated fluorocarbons by a convenient thermal process" Science Vol.271, pp.340-341, 1996. 5. Lin, K. S. and Wang, H. P., "Rate enhancement by cations in supercritical water oxidation of 2-chlorophenol" Environmental Science & Technology Vol.33, pp.3278-3280, 1999. 6. Crummett, W. B. and Stenger, V. A., "Thermal Stability of Methyl Chloroform and Carbon Tetrachloride" Ind. Eng. Chem. Vol.48, pp.434-436, 1956. 7. Singh, H. B., Fowler, D. P., and Peyton, T. O., "Atmospheric Carbon-Tetrachloride - Another Man-Made Pollutant" Science Vol.192, pp.1231-1234, 1976. 8. Nicoll, G. and Francisco, J. S., "Heterogeneous degradation of carbon tetrachloride: Breaking the carbon-chlorine bond with activated carbon surfaces" Environ. Sci. Technol. Vol.33, pp.4102-4106, 1999. 9. Foy, B. R., Waldthausen, K., Sedillo, M. A., and Buelow, S. J., "Hydrothermal processing of chlorinated hydrocarbons in a titanium reactor" Environ. Sci. Technol. Vol.30, pp.2790-2799, 1996. 10. "Molecular Structure and Spectroscopy". in: CRC Handbook Chemistry and Physics, David R.Lide, ed., pp. 9-52-9-71, CRC Press, 2004. 11. Vohs, J. K., Brege, J. J., Raymond, J. E., Brown, A. E., Williams, G. L., and Fahlman, B. D., "Low-temperature growth of carbon nanotubes from the catalytic decomposition of carbon tetrachloride" J. Am. Chem. Soc. Vol.126, pp.9936-9937, 2004. 12. Robert DeVries Consultant, "Carbon: diamond, nature". in: Kirk-Othmer encyclopedia of chemical technology, pp. 1074-1082, Vol.4, John Wiley and Sons, 1993. 13. Wentorf, R. H., "Carbon: diamond, synthetic". in: Kirk-Othmer encyclopedia of chemical technology, pp. 1082-1096, Vol.4, John Wiley and Sons, 1993. 14. Gruen, D. M., "Nanocrystalline diamond films" Annu. Rev. Mater. Sci. Vol.29, pp.211-259, 1999. 15. Hiraki, A., "Low-temperature (200 degrees C) growth of diamond on nano-seeded substrates" Appl. Surf. Sci. Vol.162, pp.326-331, 2000. 16. Muranaka, Y., Yamashita, H., and Miyadera, H., "Worldwide status of low temperature growth of diamond" Diamond Relat. Mater. Vol.3, pp.313-318, 1994. 17. Li, Y. D., Qian, Y. T., Liao, H. W., Ding, Y., Yang, L., Xu, C. Y., Li, F. Q., and Zhou, G., "A reduction-pyrolysis-catalysis synthesis of diamond" Science Vol.281, pp.246-247, 1998. 18. Kumar, M. D. S., Akaishi, M., and Yamaoka, S., "Formation of diamond from supercritical H2O-CO2 fluid at high pressure and high temperature" J. Cryst. Growth Vol.213, pp.203-206, 2000. 19. Roy, R., Ravichandran, D., Ravindranathan, P., and Badzian, A., "Evidence for hydrothermal growth of diamond in the C-H-O and C- H-O halogen system" J. Mater. Res. Vol.11, pp.1164-1168, 1996. 20. Zhao, X. Z., Roy, R., Cherian, K. A., and Badzian, A., "Hydrothermal growth of diamond in metal-C-H2O systems" Nature Vol.385, pp.513-515, 1997. 21. Hirose, Y., Amanuma, S., and Komaki, K., "The synthesis of high-quality diamond in combustion flames" J. Appl. Phys. Vol.68, pp.6401, 1990. 22. Okada, M., Nishigawara, Y., and Kubomura, K., "A process for continuous manufacturing of diamond in atmosphere" Diamond Relat. Mater. Vol.11, pp.1479-1484, 2002. 23. Lou, Z. S., Chen, Q. W., Wang, W., Qian, Y. T., and Zhang, Y. F., "Growth of large diamond crystals by reduction of magnesium carbonate with metallic sodium" Angew. Chem. Int. Edit. Vol.42, pp.4501-4503, 2003. 24. Lou, Z. S., Chen, Q. W., Zhang, Y. F., Wang, W., and Qian, Y. T., "Diamond formation by reduction of carbon dioxide at low temperatures" J. Am. Chem. Soc. Vol.125, pp.9302-9303, 2003. 25. Eckert, C. A., Knutson, B. L., and Debenedetti, P. G., "Supercritical fluids as solvents for chemical and materials processing" Nature Vol.383, pp.313-318, 1996. 26. Clifford, T., "Fundamentals of supercritical fluids", Oxford University Press, Edition. 1, New York, 1999. 27. Eckert, C. A. and Chandler, K., "Tuning fluid solvents for chemical reactions" J. Supercrit. Fluid. Vol.13, pp.187-195, 1998. 28. Sato, H., Uematsu, M., and Watanabe, K., "New International Skeleton Tables for the Thermodynamic Properties of Ordinary Water Substance" J. Phys. Chem. Ref. Data Vol.17, pp.1439-1540, 1988. 29. Ohtaki, H., Radnai, T., and Yamaguchi, T., "Structure of water under subcritical and supercritical conditions studied by solution X-ray diffraction" Chem. Soc. Rev. Vol.26, pp.41-51, 1997. 30. Sato, H., Uematsu, M., and Watanabe, K., "New International Skeleton Tables for the Thermodynamic Properties of Ordinary Water Substance" J. Phys. Chem. Ref. Data Vol.17, pp.1439-1540, 1988. 31. Broll, D., Kaul, C., Kramer, A., Krammer, P., Richter, T., Jung, M., Vogel, H., and Zehner, P., "Chemistry in supercritical water" Angew. Chem. Int Edit Vol.38, pp.2999-3014, 1999. 32. Modell, M., "Supercritical water oxidation". in: Standard handbook of hazardous waste treatment and disposal, Freeman, H., ed., pp. 8.153-8.168, McGraw-Hill, New York, 1989. 33. Ikushima, Y., Hatakeda, K., Saito, N., and Arai, M., "An in situ Raman spectroscopy study of subcritical and supercritical water: The peculiarity of hydrogen bonding near the critical point" J. Chem. Phys. Vol.108, pp.5855-5860, 1998. 34. Gorbaty, Yu. E. and Kalinichev, A. G., "Hydrogen bonding in supercritical water. I. Experimental results" J. Phys. Chem. Vol.99, pp.5336-5340, 1995. 35. Yamanaka, K., Yamaguchi, T., and Wakita, H., "Structure of water in the liquid and supercritical states by rapid x-ray diffractometry using an imaging plate detector" J. Chem. Phys. Vol.101, pp.9830-9836, 1994. 36. Hoffmann, M. M. and Conradi, M. S., "Are there hydrogen bonds in supercritical water?" J. Am. Chem. Soc. Vol.119, pp.3811-3817, 1997. 37. Chen, J. Y., Zheng, H. F., and Zeng, Y. S., "Recent progress in supercritical water theoretical research" Prog. Chem. Vol.14, pp.409-414, 2002. 38. Kalinichev, A. G. and Bass, J. D., "Hydrogen-Bonding in Supercritical Water - A Monte-Carlo Simulation" Chem. Phys. Lett. Vol.231, pp.301-307, 1994. 39. Kalinichev, A. G. and Churakov, S. V., "Thermodynamics and structure of molecular clusters in supercritical water" Fluid Phase Equilib. Vol.183, pp.271-278, 2001. 40. Zhou, J., Lu, X. H., Wang, Y. R., and Shi, J., "Molecular dynamics simulation of supercritical water" Acta Physico-Chimica Sinica Vol.15, pp.1017-1022, 1999. 41. Marti, J., "Analysis of the hydrogen bonding and vibrational spectra of supercritical model water by molecular dynamics simulations" J. Chem. Phys. Vol.110, pp.6876-6886, 1999. 42. Gordillo, M. C. and Marti, J., "Hydrogen bond structure of liquid water confined in nanotubes" Chem. Phys. Lett. Vol.329, pp.341-345, 2000. 43. Gordillo, M. C. and Marti, J., "Hydrogen bonding in supercritical water confined in carbon nanotubes" Chem. Phys. Lett. Vol.341, pp.250-254, 2001. 44. Cochran, H. D., Cummings, P. T., and Karaborni, S., "Solvation in supercritical water" Fluid Phase Equilib. Vol.71, pp.1-16, 1992. 45. Iijima, S., "Helical microtubules of graphitic carbon" Nature Vol.354, pp.56-58, 1991. 46. Moreno, J. M. C. and Yoshimura, M., "Hydrothermal processing of high-quality multiwall nanotubes from amorphous carbon" J. Am. Chem. Soc. Vol.123, pp.741-742, 2001. 47. Calderon-Moreno, J. M. and Yoshimura, M., "Hydrothermal processing of carbon nanotubes from dense fluids: Growth mechanism" Mater. Trans. Vol.42, pp.1681-1683, 2001. 48. Motiei, M., Hacohen, Y. R., Calderon-Moreno, J., and Gedanken, A., "Preparing carbon nanotubes and nested fullerenes from supercritical CO2 by a chemical reaction" J. Am. Chem. Soc. Vol.123, pp.8624-8625, 2001. 49. Chang, J. Y., Ghule, A., Chang, J. J., Tzing, S. H., and Ling, Y. C., "Opening and thinning of multiwall carbon nanotubes in supercritical water" Chem. Phys. Lett. Vol.363, pp.583-590, 2002. 50. Holmes, J. D., Johnston, K. P., Doty, R. C., and Korgel, B. A., "Control of thickness and orientation of solution-grown silicon nanowires" Science Vol.287, pp.1471-1473, 2000. 51. Chang, J. Y., Chang, J. J., Lo, B., Tzing, S. H., and Ling, Y. C., "Silver nanoparticles spontaneous organize into nanowires and nanobanners in supercritical water" Chem. Phys. Lett. Vol.379, pp.261-267, 2003. 52. Chang, J. Y., Mai, F. D., Lo, B., Chang, J. J., Tzing, S. H., Ghule, A., and Ling, Y. C., "Transportation of silver nanopaticles in nanochannels of carbon nanotubes with supercritical water" Chem. Commun. pp.2362-2363, 2003. 53. Tester, J. W., Holgate,H.R., Armellini,F.J., Webley,P.A., Killilea,W.R., Hong,G.T., and Barner,H.E., "Supercritical water oxidation technology: process development and fundamental research". in: Emerging technologies in hazardous waste management III, Tedder, D. W. and Pohland, F. G., eds. pp. 35-76, Vol.518, American Chemical Society, Washington,DC, 1993. 54. Tester, J. W. and Cline, J. A., "Hydrolysis and oxidation in subcritical and supercritical water: Connecting process engineering science to molecular interactions" Corrosion Vol.55, pp.1088-1100, 1999. 55. Griffith, J. W. and Raymond, D. H., "The first commercial supercritical water oxidation sludge processing plant" Waste. Manage. Vol.22, pp.453-459, 2002. 56. Svanstrom, M., Froling, M., Modell, M., Peters, W. A., and Tester, J., "Environmental assessment of supercritical water oxidation of sewage sludge" Resour. Conserv. Recy. Vol.41, pp.321-338, 2004. 57. Barner, H. E., Huang, C. Y., Johnson, T., Jacobs, G., Martch, M. A., and Killilea, W. R., "Supercritical water oxidation. An emerging technology" J. Hazard. Mater. Vol.31, pp.1-17, 1992. 58. Ding, Z. Y., Frisch, M. A., Li, L. X., and Gloyna, E. F., "Catalytic oxidation in supercritical water" Ind. Eng. Chem. Res. Vol.35, pp.3257-3279, 1996. 59. Krajnc, M. and Levec, J., "Catalytic oxidation of toxic organics in supercritical water" Appl. Catal. B:Environ. Vol.3, pp.L101-L107, 1994. 60. Thornton, T. D. and Savage, P. E., "Phenol oxidation pathways in supercritical water" Ind. Eng. Chem. Res. Vol.31, pp.2451-2456, 1992. 61. Ding, Z. Y., Sudhir, N. V., Aki, K., and Abraham, M. A., "Catalytic supercritical water oxidation: Phenol conversion and product selectivity" Environ. Sci. Technol. Vol.29, pp.2748-2753, 1995. 62. Aki, S. N. V. K., Ding, Z. Y., and Abraham, M. A., "Catalytic supercritical water oxidation: stability of Cr2O3 catalyst" AICHE J. Vol.42, pp.1995-2004, 1996. 63. Kruse, A. and Dinjus, E., "Hydrogen from methane and supercritical water" Angew. Chem. Int Edit Vol.42, pp.909-+, 2003. 64. Sigoli, F. A., Kawano, Y., Davolos, M. R., and Jafelicci, M., "Phase separation in pyrex glass by hydrothermal treatment: Evidence from micro-Raman spectroscopy" J. Non-Cryst. Solids. Vol.284, pp.49-54, 2001. 65. Sigoli, F. A., Feliciano, S., Giotto, M. V., Davolos, M. R., and Jafelicci, M., "Porous silica matrix obtained from pyrex class by hydrothermal treatment: Characterization and nature of the porosity" J. Am. Ceram. Soc. Vol.86, pp.1196-1201, 2003. 66. Bell, W. C. and Myrick, M. L., "Preparation and characterization of nanoscale silver colloids by two novel synthetic routes" J. Colloid Interface Sci. Vol.242, pp.300-305, 2001. 67. Lu, J., Wang, B., and Zhang, J., "Corrosion of stainless steels and Ni-base alloy in supercritical water oxidation system" Cailiao Yanjiu Xuebao/Chinese Journal of Materials Research Vol.16, pp.41-45, 2002. 68. Kritzer, P., "Corrosion in high-temperature and supercritical water and aqueous solutions: a review" J. Supercrit. Fluid. Vol.29, pp.1-29, 2004. 69. Kritzer, P. and Dinjus, E., "An assessment of supercritical water oxidation (SCWO) - Existing problems, possible solutions and new reactor concepts" Chem. Eng. J. Vol.83, pp.207-214, 2001. 70. Callister, W. D., "Materials science and engineering an introduction", John Wiley & Sons, Edition. 6, pp.569-610, 2003. 71. Kritzer, P., Boukis, N., and Dinjus, E., "Factors controlling corrosion in high-temperature aqueous solutions: a contribution to the dissociation and solubility data influencing corrosion processes" J. Supercrit. Fluid. Vol.15, pp.205-227, 1999. 72. Kritzer, P., Boukis, N., and Dinjus, E., "Corrosion of alloy 625 in aqueous solutions containing chloride and oxygen" Corrosion Vol.54, pp.824-834, 1998. 73. Mitton, D. B., Yoon, J. H., Cline, J. A., Kim, H. S., Eliaz, N., and Latanision, R. M., "Corrosion behavior of nickel-based alloys in supercritical water oxidation systems" Ind. Eng. Chem. Res. Vol.39, pp.4689-4696, 2000. 74. Zhang, L., Han, E. H., Zhang, Z. O., Guan, H., and Ke, W., "The corrosion of stainless steel and nickel base alloys in subcritical water condition" Acta. Metall. Sin. Vol.39, pp.649-654, 2003. 75. Kim, Y. S., Mitton, D. B., and Latanision, R. M., "Corrosion resistance of stainless steels in chloride containing supercritical water oxidation system" Korean. J. Chem. Eng. Vol.17, pp.58-66, 2000. 76. Konys, J., Fodi, S., Hausselt, J., Schmidt, H., and Casal, V., "Corrosion of high-temperature alloys in chloride-containing supercritical water oxidation systems" Corrosion Vol.55, pp.45-51, 1999. 77. Kritzer, P., Boukis, N., and Dinjus, E., "Corrosion of alloy 625 in high-temperature, high-pressure sulfate solutions" Corrosion Vol.54, pp.689-699, 1998. 78. Kane, R. D., "Pick the right materials for wet oxidation" Chem. Eng. Prog. Vol.95, pp.51-58, 1999. 79. "Safety in the operation of Lab Reactors & Pressure Vessels", Parr Instrument, [230M], 2001. 80. Han, E. H., "Supercritical water oxidation technology and its materials degradation" Rare Metal Mat. Eng. Vol.29, pp.45-48, 2000. 81. Schacht, M., Boukis, N., and Dinjus, E., "Corrosion of alumina ceramics in acidic aqueous solutions at high temperatures and pressures" J. Mater. Sci. Vol.35, pp.6251-6258, 2000. 82. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., and Pople, J. A. Gaussian 03. Revision B.03. 2003. Gaussian, Inc.: Pittsburgh PA. Ref Type: Computer Program 83. Diaz, J., Paolicelli, G., Ferrer, S., and Comin, F., "Separation of the sp(3) and sp(2) components in the C1s photoemission spectra of amorphous carbon films" Physical Review B Vol.54, pp.8064-8069, 1996. 84. Haerle, R., Riedo, E., Pasquarello, A., and Baldereschi, A., "sp(2)/sp(3) hybridization ratio in amorphous carbon from C 1s core-level shifts: X-ray photoelectron spectroscopy and first-principles calculation" Physical Review B Vol.65, 2002. 85. Ferrari, A. C. and Robertson, J., "Interpretation of Raman spectra of disordered and amorphous carbon" Physical Review B Vol.61, pp.14095-14107, 2000. 86. Ferrari, A. C., "Determination of bonding in diamond-like carbon by Raman spectroscopy" Diamond Relat. Mater. Vol.11, pp.1053-1061, 2002. 87. Bundy, F. P., Bovenkerk, H. P., Strong, H. M., and Wentorf, R. H., Jr., "Diamond-graphite equilibrium line from growth and graphitization of diamond" J. Chem. Phys. Vol.35, pp.383-391, 1961. 88. Ferro, S., "Synthesis of diamond" J. Mater. Chem. Vol.12, pp.2843-2855, 2002. 89. Chien, Y. C., Wang, H. P., and Yang, Y. W., "Mineralization of CCl4 with copper oxide" Environmental Science & Technology Vol.35, pp.3259-3262, 2001.
|