跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.169) 您好!臺灣時間:2025/10/29 12:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林昆佑
研究生(外文):Kun-Yo Lin
論文名稱:以具有未知循環位移之高解析度距離輪廓做自動目標物識別
論文名稱(外文):Automatic Target Recognition Based on High Resolution Range Profiles with Unknown Circular Range Shift
指導教授:黃正光黃正光引用關係
學位類別:碩士
校院名稱:元智大學
系所名稱:通訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:45
中文關鍵詞:自動目標物識別高解析度距離輪廓步階頻率波型訊號空間法則統計分類
外文關鍵詞:automatic target recognitionhigh resolution range profilestep frequency waveformsstatistical classificationsignal space method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:279
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中,我們提出一個基於高解析度距離輪廓(high resolution range profile, HRRP)之自動飛行目標識別(automatic aircraft target recognition, ATR)方法的架構。此架構可以拆解成下列兩個主要部份。第一部份我們探討如何去產生一個高解析度距離輪廓,其中包含了雷達截面積(radar cross section, RCS)的塑模、模擬、步階頻率波型(step frequency waveform, SFW)的設計、以及如何利用反傅利葉轉換來處理合成的高解析度距離輪廓,並用此藉以建立目標物高解析度距離輪廓的資料庫,以供後續自動目標物識別演算法使用。此外我們假設已知目標物飛行的軌跡、水平角和仰角,並且憑藉著統計分類的技巧來進一步發展自動飛行目標的識別方法。我們提出兩種不同的識別演算法,包含最大事後機率(maximum a posteriori, MAP),以及平方分類器(quadratic classifier)基於統計特徵的分類器 (feature-based statistical classifier)。我們會先就基礎的平方分類器切入鑑別演算法。而在最大事後機率決策法則中我們是採用訊號空間的觀念。利用格蘭樞密特正交化(Gram-Schmidt orthogonalization ,GSO)步驟去建構出訊號空間,然後將接收到的高解析度距離輪廓投影到訊號空間上。最後,我們可以依據觀測向量與各信號向量間之最小距離做為目標鑑別準則。本文中已包含的模擬結果,可以證明這些近似法的可行性。
In this thesis, an automatic aircraft target recognition (ATR) framework is presented, which is based on the high resolution range profiles (HRRP) of aircraft targets. This work is divided into two major parts. First, we consider the generation of the HRRP, which includes the modeling and simulation of radar cross section (RCS), the design of step frequency waveform (SFW), and IFFT processing for HRRP synthesis. In practice, a possible circular shift of the received HRRP relative to the template HRRPs in target library may exist. In such a situation, we resort to the statistical classification technique to develop ATR algorithms. We propose two kind of recognition algorithms including maximum a posteriori (MAP) decision rule, and quadratic classifier. In MAP criterion, we use the concept of signal space. we adopt the Gram-Schmidt orthogonalization (GSO) procedure to construct a signal space, and then project the received HRRP onto the signal space. Finally, the target classification can be done in terms of MAP decision rule. Generally speaking, the standard approaches for ATR use the entire range profile as the feature vector. Training the classifier is simply a statistical parameter problem. The estimation of the parameters is based on the observation of the target over a small range of viewing aspects. And the quadratic classifier is the most popular choice. Simulation results are also included to demonstrate the feasibility of these approaches.
書名頁 I
指導教授推薦函 II
論文口試委員會審定書 III
授權書 IV
Chinese Abstract V
English Abstract VI
Acknowledgements VIII
Content IX
List of Tables XI
List of Figures XII

Chapter 1 : Introduction.................................1
1.1 Motivation of the Research...........................1
1.2 Thesis Organization..................................2

Chapter 2 : Generation of the High Resolution Range
Profile......................................3
2.1 Modeling of High Resolution Range Profile............3
2.2 Prediction of Radar Cross Section (RCS)..............3
2.3 Stepped Frequency Waveform (SFW)....................10
2.4 Generation of the Synthesized Range Profile.........12
2.5 Range aliasing and cyclic range shift...............15
2.6 Build Up Target HRRP database.......................20

Chapter 3 : HRRP-Based Statistical ATR Algorithm in the
presence of unknown Cyclic Shift............21
3.1 Problem formulation and HRRP-Based ATR Flow.........21
3.2 Quadratic classifier applied to ATR problem.........22
3.3 Establish the presence or absence of a target under
the specified false alarm probability...............27
3.4 Estimation of circular shift,phase shift,and
attenuation.........................................31
3.5 Construction of the signal space....................33
3.6 Decision rule.......................................35
3.7 Computer Simulation Result..........................36

Chapter 4 : Conclusions.................................43
Reference ...............................................44
[1] D. R. Wehner, High Resolution Radar, second edition,
Artech House, 1993

[2] J. P. Zwart, et al : “Aircraft Classification from
Estimated Models of Radar Scattering, ” submitted to
Pattern Recognition, 2003.

[3] S. P. Jacobs and J.A. O''Sullivan: “High resolution
radar models for joint tracking and recognition,”
IEEE National Radar Conference, pp.99–104, May. 1997.

[4] B. R. Mahafza and A. Z. Elsherbeni, MATLAB Simulations
for Radar Systems Design, Chapman & Hall/CRC, 2003.

[5] S.P. Jacobs and J.A. O''Sullivan , ‘‘Automatic target
recognition using sequences of high resolution radar
range-profiles,’’ IEEE Transactions on Aerospace and
Electronic Systems, pp.364 – 381, April 2000.

[6] S. Hudson and D. Psaltis, ‘‘ Correlation filters for
aircraft identification from radar range profiles,’’
IEEE Transactions on Aerospace and Electronic Systems,
July. 1993.

[7] H. Liu and Z. Bao, ‘‘Radar HRRP target recognition
based on higher order spectra,’’ IEEE Transactions
on Signal Processing , pp.2359 -2368, July. 2005.

[8] D. L. Moffatt and G. Dural ‘‘ISAR imaging to
identify basic scattering mechanisms,’’ IEEE
Transactions on Antennas and Propagation, pp.99 –
110, Jan. 1994

[9] M.R. Bell and R.A. Grubbs, ‘‘JEM modeling and
measurement for radar target identification,’’ IEEE
Transactions on Aerospace and Electronic Systems,
pp.73 – 87, Jan. 1993.

[10] F. Sadjadi, “Enhanced target recognition using
optimum polarimetric SAR signatures,” IEEE Radar
Conference, pp.293 – 298, May. 1998.

[11] G. S. Gill, “Step frequency waveform design and
processing for detection of moving targets in
clutter, ” Radar Conference, 1995., Record of the
IEEE 1995 International , pp.573-578, 8-11, May 1995

[12] R. A. Mitchell, “Overview of high range resolution
radar target identification, ” In proceedings of
Automatic Target Recognition Working Group, Monterey,
CA, 1994

[13] S. T. Kay, Fundamentals of Statistical Signal
Processing Detection Theory, Prentice-Hall, 1998

[14] J. G.. Proakis, Digital Communications, third
Edition, McGraw-HILL, 1995
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top