跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.62) 您好!臺灣時間:2025/11/16 06:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黎彥良
研究生(外文):Yen Liang Li
論文名稱:以轉錄體學方法鑑定ITGA6及GDF15可促進頭頸癌之放射線抗性
論文名稱(外文):Transcriptomic analyses identify ITGA6 and GDF15 contributing to radioresistance in head-neck cancer
指導教授:鄭恩加
指導教授(外文):A. J. Cheng
學位類別:博士
校院名稱:長庚大學
系所名稱:生物醫學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:中文
論文頁數:132
中文關鍵詞:頭頸癌放射線抗性癌症幹細胞反應性氧族ITGA6THBS1GDF15SMADFAKNRF2
外文關鍵詞:head-neck cancerradioresistancecancer stem cellsreactive oxygen speciesITGA6THBS1GDF15SMADFAKNRF2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:262
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
放射線療法是頭頸癌治療中相當重要的一環,然而放射線抗性卻是一個使療效大幅降低的主要因素。為了全面性的探討影響放射線抗性的重要基因,我們整併了轉錄體學資料庫、頭頸癌臨床的外顯子陣列晶片資料庫以及單維梯度膠體蛋白質電泳資料庫,進一步針對ITGA6 和 GDF15如何影響放射線敏感性做進一步的探討。我們首先確認THBS1和ITGA6會藉由受體與受器的關係影響放射線抗性,接著發現兩分子結合後會藉由活化FAK和NRF2分別執行其下游的功能,包括影響細胞骨架達到改變細胞移形能力以及轉錄GCLC次單元來減低放射線造成的細胞內氧化壓力。同時我們發現GDF15可以經由SMAD訊息傳遞路徑的磷酸化去降低細胞內反應性氧族進而使CD44癌症幹細胞表面抗原增加以及調控ALDH1族群分布達到癌症幹細胞轉換的目的。而在動物實驗中也可以看到GDF15可以明顯促進裸鼠異體移植腫瘤的放射線抗性。在臨床方面,我們也藉由觀察頭頸癌病患臨床檢體以及TCGA資料庫中的癌症基因體檔案,發現THBS1、ITGA6以及GDF15在癌症病患中有高量表現並降低了整體存活率。總結來說,我們發現THBS1、ITGA6和GDF15會影響頭頸癌的放射線抗性,並且藉由不同的訊息傳遞路徑達到促使細胞惡性化及減少放射線造成的氧化壓力傷害。
Radiotherapy is an integral part for the treatment of head and neck cancer (HNC), while radioresistance is a major cause leads to treatment failure. We have previously identified THBS1, ITGA6 and GDF15 as potential radioresistance associated gene by transcriptomic and proteomic approaches. We found the cross talk between THBS1 and ITGA6 contribute to both radioresistance and invasive ability via FAK-NRF2-GCLC axis and regulating tubulin cytoskeleton protein expression; which GCLC assess ROS clearance and tubulin participate in cancer cell migration. Simultaneously, we discovered GDF15 can contribute to cancer stem cells conversion by elevated CD44 and ALDH1 population via SMAD-associated pathway and further decrease intracellular ROS. In vivo xenograft tumor model also demonstrated that GDF15 possess radioresistance ability of HNC cells. In clinical, we analyzed HNC patient plasma samples and cancer genomics from TCGA database, found higher THBS1, ITGA6 and GDF15 expression in cancer patients and lead to worse overall survival in various types of cancer. Taken together, our results clarify that panel molecules THBS1, ITGA6 and GDF15 contribute to tumor malignancy and radioresistance ability via distinguish signaling pathway, focus on these molecules in future may provide better clinical outcome for patient receive radiotherapy.
指導教授推薦書
口試委員會審定書
致謝 iii
摘要 iv
ABSTRACT v
CONTENT vi
BACKGROUND AND SIGNIFICANCE 1
Head and neck cancer 1
Radiotherapy is an integral part for the treatment of HNC 1
Molecules and phenotypes associated with radioresistance 3
ITGA6, and GDF15 are potential radioresistance genes in HNC 4
SPECIFIC AIMS 6
MATERIALS AND METHODS 7
RESULTS AND DISCUSSION 16
PART I: ITGA6 contributes to radioresistance of head and neck cancer by regulating cellular reactive oxygen species and cytoskeleton via a FAK-associated NRF2 signaling pathway 16
PART II: GDF15 contributes to radioresistance and cancer stemness of head and neck cancer by regulating cellular reactive oxygen species via a SMAD-associated signaling pathway 31
REFERENCES 45
TABLES AND FIGURES 54


List of Tables
Table 1. Functional classification of 470 genes differentially expressed in the RR sublines compare to the parental HNC cells. 54
Table 2. Functional gene pathways associated with the RR phenotype of HNC. 55
Table 3. Differentially expressed genes (up-regulated) in HNC radio-resistance sublines as analyzed by microarray. 56
Table 4. Differentially expressed genes (down-regulated) in HNC radio-resistance sublines as analyzed by microarray. 58
Table 5. Candidate genes up-regulated in cDNA microarray and clinical tissue array. 61
Table 6. List of genes and primer sequences used in this study. 62
Table 7. List of antibody sources used in this study. 63
Table 8. Clinical characteristics of HNC patients used in GDF15 study. 64


List of Figures
Figure 1. Integration of RR transcriptomic dataset and clinical HNC exon-array dataset.. 67
Figure 2. Profiling and validation of the genes differentially expressed in RR sublines.. 69
Figure 3. Cross talk between THBS1 and ITGA6. 71
Figure 4. THBS1 and ITGA6 protein level expression in RR sublines. 72
Figure 5. ITGA6hi HNC cells show higher radioresistance ability. 73
Figure 6. Knock down THBS1 and ITGA6 can enhance radio-sensitivity in HNC. 74
Figure 7. ITGA6 and THBS1 reduction contribute to higher intracellular ROS under oxidative stress. 75
Figure 8. ITGA6 may effect intracellular ROS via regulating antioxidants precursor enzymes. 76
Figure 9. RhTHBS1 can induce GCLC expression. 77
Figure 10. Knock down GCLC lead to radiosensitive in HNC cells.. 798
Figure 11. THBS1 and ITGA6 can affect NRF2 binding to antioxidant response element individually. 79
Figure 12. Treatment of rhTHBS1 phosphorylated NRF2 in HNC cells. 80
Figure 13. HNC RR sublines show higher phopho-NRF2 expression compare to parental cells. …………………………………………………..………..81
Figure 14. Inhibition of FAK and PKC pathway can reduce the ARE luciferase activity. 82
Figure 15. Inhibition of FAK pathway decreased GCLC expression in HNC cells. 83
Figure 16. FAK binds and activates NRF2. 84
Figure 17. Treatment of NRF2 antibody block the FAK-induced NRF2 translocation and GCLC expression.…………………………………………….85
Figure 18. Knock down ITGA6 decrease THBS1-ITGA6-NRF2 axis induce GCLC expression. 86
Figure 19. Inhibition of FAK by PF573228 decreased radioresistance ability in HNC cells. 87
Figure 20. Treatment of PF573228 increase intracellular ROS level. 88
Figure 21. THBS1-ITGA6 axis may affect tubulin cytoskeleton via FAK signaling. 89
Figure 22. Knock down GCLC contribute to tubulin repression….......90
Figure 23. Oxidative stress induced by H2O2 descending cytoskeleton expression in HNC cells. 91
Figure 24. THBS1 can partially rescue tubulin catastrophe by preventing H2O2 induced oxidative stress. 92
Figure 25. Knock down ITGA6 significantly reduce invasion and migration ability. 93
Figure 26. THBS1 can partially rescue cancer cell migration ability damaged by H2O2-induced oxidative stress. 94
Figure 27. Fig 27. HNC Cancer cells migration reduced after blockade of NRF2 or GCLC expression……………………………………………………….95
Figure 28. THBS1 is elevated in plasma samples from HNC patients. 96
Figure 29. Cancer genomics analysis of overall survival within different cancer by cBioPortal software with both THBS1 and ITGA6 alteration.………………………………………………………………………………….……97
Figure 30. Diagram of the mechanism by which THBS1 and ITGA6 contributes to cancer cell radioresistance via FAK-NRF2 axis pathway. 98
Figure 31. GDF15 may regulate radiosensitivity in HNC cells. 99
Figure 32. GDF15 suppresses cellular level of reactive oxygen species (ROS). 100
Figure 33. Knockdown of GDF15 increase mitochondria membrane potential by mitocapture de binding assay. 101
Figure 34. Introduction of GDF15 reduces K+ ion effluxing out of cells via KCNJ2. 102
Figure 35. Treatment of antioxidant agent led to radioresistance in HNC cells. 103
Figure 36. Treatment of antioxidant agent increase CD44+ cell population. 104
Figure 37. GDF15 contribute to upregulation of ALDH1+ population. 105
Figure 38. Treatment of GDF15 contribute to higher sphere formation ability under oxidative stress. 106
Figure 39. CD44+/CD24- sub-population of HNC cells show higher GDF15 expression than CD44-/CD24- sub-population in mRNA and secrete form protein level. 107
Figure 40. GDF15 contribute to CSCs phenotype by regulating ALDH1+ population. 108
Figure 41. ALDH1 population was affected by GDF15. 109
Figure 42. GDF15+ population exhibit higher sphere forming ability. 110
Figure 43. Silencing of GDF15 reduced formation of spheroid size and number. 111
Figure 44. GDF15 lead to elevation of invasion and migration ability in HNC cells. 113
Figure 45. GDF15 expression was reduced after treatment of TGF-β inhibitor. 114
Figure 46. GDF15 share the signal pathway with TGF-β. 115
Figure 47. GDF15 is associate with SMAD signaling pathway. 116
Figure48. GDF15 regulates cellular functions through similar downstream pathway of TGF-β. 117
Figure 49. Xenograft tumor model design. 118
Figure50. Xenograft tumor model demonstrates IR resistance phenotype induced by GDF15. 119
Figure 51. GDF15 is elevated in plasma samples from HNC patients. 121
Figure 52. Diagram of the mechanism by which GDF15 contributes to radioresistance and cancer stemness through regulating ROS levels via a SMAD-associated pathway. 122
1. Global cancer rates could increase by 50% to 15 million by 2020. World Health
Organization, 2011.
2. Geneva, Expert Committee on the Selection and Use of Essential Medicines,
2009.
3. Groundbreaking cancer research, Cancer Facts & Figures. American Cancer Society, 2010.
4. Rebecca Siegel., et al., Cancer statistics, 2013. CA Cancer J Clin. 2013; 63: 11-30.
5. Al-Sarraf, M., Treatment of locally advanced head and neck cancer: historical and
critical review. Cancer Control. 2002; 9: 387-99.
6. Holliday, EB., et al., Proton Radiation Therapy for Head and Neck Cancer:
A Review of the Clinical Experience to Date.Int J Radiat Oncol Biol Phys. 2014;
89(2): 292-302.
7. Guo Y., et al., Identification of genes involved in radioresistance of nasopharyngeal
carcinoma by integrating gene ontology and protein-protein interaction networks.
Int J Oncol. 2012; 40(1): 85-92.
8. Fukuda, A., et al., [Shielding effect of clinical X-ray protector and lead glass
against annihilation radiation and gamma rays of 99mTc]. Nihon Hoshasen Gijutsu
Gakkai Zasshi. 2004; 60: 1723-9.
9. Chargari, C., et al., Cancer stem cells, cornerstone of radioresistance and
perspectives for radiosensitization: glioblastoma as an example. Bull Cancer. 2012
; 99(12): 1153-60.
10. Serebrianyĭ, AM., Radiation adaptive response as a stress reaction of a cell.
Radiats Biol Radioecol. 2011; 51(4): 399-404.
11. FitzGerald TJ, D.C., Kase K, Rothstein LA, McKenna M, Greenberger JS,
Activated human N-ras oncogene enhances x-irradiation repair of mammalian cells in vitro less effectively at low dose rate. Implications for increased therapeutic ratio of low dose rate irradiation. Am J Clin Oncol. 1985; 8: 517-22.
12. Hatanpaa, K.J., et al., Epidermal growth factor receptor in glioma: signal
transduction, neuropathology, imaging, and radioresistance. Neoplasia. 2010; 12:
675-84.
13. González-Sarrías, A., et al., Gene expression, cell cycle arrest and MAPK
signaling regulation in Caco-2 cells exposed to ellagic acid and its metabolites,
urolithins. Mol Nutr Food Res. 2009; 53: 686-98.
14. Endo, H., et al., Dormancy of Cancer Cells with Suppression of AKT Activity
Contributes to Survival in Chronic Hypoxia. PLoS One. 2014; 9(6):e98858.
15. Bussink, J., A.J. van der Kogel, and J.H. Kaanders, Activation of the PI3-K/AKT
pathway and implications for radioresistance mechanisms in head and neck cancer. Lancet Oncol. 2008; 9: 288-96.
16. Brunet, A., et al., Akt promotes cell survival by phosphorylating and inhibiting a
Forkhead transcription factor. Cell. 1999; 96: 857-68.
17. Chaturvedi MM, S.B., Yadav VR, Kannappan R, Aggarwal BB, NF-κB addiction
and its role in cancer: 'one size does not fit all'. Oncogene. 2011; 30: 1615-30.
18. Hein AL, Ouellette MM, Yan Y. Radiation-induced signaling pathways that
promote cancer cell survival (review). Int J Oncol. 2014; 45(5): 1813-9.
19. Toulany M, Rodemann HP. Phosphatidylinositol 3-kinase/Akt signaling as a key
mediator of tumor cell responsiveness to radiation. Semin Cancer Biol. 2015; 35:
180-90.
20. Baumann, M., M. Krause, and R. Hill, Exploring the role of cancer stem cells in
radioresistance. Nat Rev Cancer. 2008; 8: 545-54.
21. Rivera, S., et al., Cancer stem cells: a new target for lung cancer treatment. Cancer
Radiother. 2011; 15: 355-64.
22. Pervaiz, S., R. Taneja, and S. Ghaffari, Oxidative stress regulation of stem and
progenitor cells. Antioxid Redox Signal. 2009; 11: 2777-89.
23. Reuter S, G.S., Chaturvedi MM, Aggarwal BB, Oxidative stress, inflammation,
and cancer: how are they linked? Free Radic Biol Med. 2010; 49: 1603-16.
24. Nucera C, Lawler J, Parangi S. BRAF(V600E) and microenvironment in
thyroid cancer: a functional link to drive cancer progression. Cancer Res. 2011;
71(7): 2417-22.
25. Trotter MJ, Colwell R, Tron VA. Thrombospondin-1 and cutaneous melanoma. J Cutan Med Surg. 2003; 7(2): 136-41.
26. Gritsenko PG, Ilina O, Friedl P. Interstitial guidance of cancer invasion. J Pathol. 2012; 226(2): 185-99.
27. Kazerounian S, Yee KO, Lawler J. Thrombospondins in cancer. Cell Mol Life Sci. 2008; 65(5): 700-12.
28. Albo D, Tuszynski GP. Thrombospondin-1 up-regulates tumor cell invasion through the urokinase plasminogen activator receptor in head and neck cancer cells. J Surg Res. 2004; 120(1): 21-6.
29. Chandrasekaran S, Guo NH, Rodrigues RG, Kaiser J, Roberts DD. Pro-adhesive and chemotactic activities of thrombospondin-1 for breast carcinoma cells are mediated by alpha3beta1 integrin and regulated by insulin-like growth factor-1 and CD98. J Biol Chem. 1999; 274(16): 11408-16.
30. Isenberg JS, Martin-Manso G, Maxhimer JB, Roberts DD. Regulation of nitric oxide signalling by thrombospondin 1: implications for anti-angiogenic therapies.
Nat Rev Cancer. 2009; 9(3): 182-94.
31. Deb M, Sengupta D, Patra SK. Integrin-epigenetics: a system with imperative
impact on cancer. Cancer Metastasis Rev. 2011.
32. Lipscomb EA, Mercurio AM. Mobilization and activation of a signaling
competent alpha6beta4integrin underlies its contribution to carcinoma progression. Cancer Metastasis Rev. 2005; 24: 413-23.
33. Sehgal BU, DeBiase PJ, Matzno S, Chew TL, Claiborne JN, Hopkinson SB,
Russell A, Marinkovich MP, Jones JC. Integrin beta4 regulates migratory behavior of keratinocytes by determining laminin-332 organization. J Biol Chem. 2006; 281: 35487-98.
34. Marinkovich MP. Tumour microenvironment: laminin 332 in squamous-cell
carcinoma. Nature reviews Cancer. 2007; 7: 370-380.
35. Soung YH, Chung J. Curcumin inhibition of the functional interaction between integrin α6β4 and the epidermal growth factor receptor. Mol Cancer Ther. 2011 May; 10(5):883-91.
36. Trusolino L, Bertotti A, Comoglio PM. A signaling adapter function for α6β4 integrin in the control of HGF-dependent invasive growth. Cell. 2001; 107(5):643-54.
37. Beaulieu JF. Integrin α6β4 in colorectal cancer. World J Gastrointest Pathophysiol. 2010; 1(1):3-11.
38. Kaimala S, Bisana S, Kumar S. Mammary gland stem cells: more puzzles than explanations. J Biosci. 2012; 37(2):349-58.
39. Unsicker K, Spittau B, Krieglstein K. The multiple facets of the TGF-β family cytokine growth/differentiation factor-15/macrophage inhibitory cytokine-1. Cytokine Growth Factor Rev. 2013; 24: 373-84.
40. Corre J, Hebraud B, Bourin P. Concise review: growth differentiation factor 15 in pathology: a clinical role? Stem Cells Transl Med. 2013; 2: 946-52.
41. Adela R, Banerjee SK. GDF-15 as a target and biomarker for diabetes and cardiovascular diseases: a translational prospective. J Diabetes Res. 2015; [doi: 10.1155/2015/490842. Epub 2015 Jul 27].
42. Li C, Wang X, Casal I, Wang J, Li P, Zhang W, Xu E, Lai M, Zhang H. Growth differentiation factor 15 is a promising diagnostic and prognostic biomarker in colorectal cancer. J Cell Mol Med. 2016; 20(8):1420-6.
43. Mehta RS, Chong DQ, Song M, Meyerhardt JA, Ng K, Nishihara R, Qian Z, Morikawa T, Wu K, Giovannucci EL, Fuchs CS, Ogino S, Chan AT. Association between plasma levels of marcrophage inhibitory cytokine-1 before diagnosis of colorectal cancer and mortality. Gastroenterology. 2015; 149: 614-22.
44. Kaur S, Chakraborty S, Baine MJ, Mallya K, Smith LM, Sasson A, Brand R, Guha S, Jain M, Wittel U, Singh SK, Batra SK. Potentials of plasma NGAL and MIC-1 as biomarker(s) in the diagnosis of lethal pancreatic cancer. PLoS One. 2013; e55171.
45. Mohamed AA, Soliman H, Ismail M, Ziada D, Farid TM, Aref AM, Al Daly ME, Abd Elmageed ZY. Evaluation of circulating ADH and MIC-1 as diagnostic markers in Egyptian patients with pancreatic cancer. Pancreatology. 2015; 15: 34-8.
46. Wang X, Li Y, Tian H, Qi J, Li M, Fu C, Wu F, Wang Y, Cheng D, Zhao W, Zhang C, Wang T, Rao J, Zhang W. Marcophage inhibitory cytokine (MIC-1/GDF15) as a novel diagnostic serum biomarker in pancreatic ductal adenocarcinoma. BMC Cancer. 2014; 14: 578.
47. Fisher OM, Levert-Mignon AJ, Lord SJ, Lee-Ng KK, Botelho NK, Falkenback D, Thomas ML, Bobryshev YV, Whiteman DC, Brown DA, Breit SN, Lord RV. MIC-1/GDF15 in Barrett’s oesophagus and oesophageal adenocarcinoma. Br J Cancer. 2015; 112: 1384-91.
48. Liu X, Chi X, Gong Q, Gao L, Niu Y, Chi X, Cheng M, Si Y, Wang M, Zhong J, Niu J, Yang W. Association of serum level of growth differentiation factor 15 with liver cirrhosis and hepatocellular carcinoma. PLoS One. 2015; 10: e0127518.
49. Wang XB, Jiang XR, Yu XY, Wang L, He S, Feng FY, Guo LP, Jiang W, Lu SH. Macrophage inhibitory factor 1 acts as a potential biomarker in patients with esophageal squamous cell carcinoma and is a target for antibody-based therapy. Cancer Sci. 2014; 105: 176-85.
50. Yang CZ, Ma J, Luo QQ, Neskey DM, Zhu DW, Liu Y, Myers JN, Zhang CP, Zhang ZY, Zhong LP. Elevated level of serum growth differentiation factor 15 is associated with oral leukoplakia and oral squamous cell carcinoma. J Oral Pathol Med. 2014; 43: 28-34.
51. Trovik J, Salvesen HB, Cuppens T, Amant F, Staff AC. Growth differentiation factor-15 as biomarker in uterine sarcomas. Int J Gynecol Cancer. 2014; 24: 252-9.
52. Blanco-Calvo M, Tarrío N, Reboredo M, Haz-Conde M, García J, Quindós M, Figueroa A, Antón-Aparicio L, Calvo L, Valladares-Ayerbes M. Circulating levels of GDF15, MMP7 and miR-200c as a poor prognostic signature in gastric cancer. Future Oncol. 2014; 10: 1187-202.
53. Urakawa N, Utsunomiya S, Nishio M, Shigeoka M, Takase N, Arai N, Kakeji Y, Koma Y, Yokozaki H. GDF15 derived from both tumor-associated marcophages and esophageal squamous cell carcinomas contributes to tumor progression via Akt and Erk pathway. Lab Invest. 2015; 95: 491-503.
54. Zhang Y, Hua W, Niu LC, Li SM, Wang YM, Shang L, Zhang C, Li WN, Wang R, Chen BL, Xin XY, Zhang YQ, Wang J. Elevated growth differentiation factor 15 expression predicts poor prognosis in epithelial ovarian cancer patients. Tumour Biol. 2016; 37(6): 8465.
55. Staff AC, Trovik J, Eriksson AG, Wik E, Wollert KC, Kempf T, Salvesen HB. Elevated plasma growth differentiation factor-15 correlates with lymph node metastases and poor survival in endometrial cancer. Clin Cancer Res. 2011; 17: 4825-33.
56. Qian Y, Jung YS, Chen X. Differentiated embryo- chondrocyte expressed gene 1 regulates p53-dependent cell survival versus cell death through macrophage inhibitory cytokine-1. Proc Natl Acad Sci USA. 2012; 109: 11300-5.
57. Li PX, Wong J, Ayed A, Ngo D, Brade AM, Arrowsmith C, Austin RC, Klamut HJ. Placental transforming growth factor-b is a downstream mediator of the growth arrest and apoptotic response of tumor cells to DNA damage and p53 overexpression. J Biol Chem. 2000; 576: 20127-35.
58. Park H, Kim CH, Jeong JH, Park M, Kim KS. GDF15 contributes to radiation-induced sensescence through the ROS-mediated p16 pathway in human endothelial cells. Oncotarget. 2016; 7: 9634-44.
59. Tsui KH, Hsu SY, Chung LC, Lin YH, Feng TH, Lee TY, Chang PL, Juang HH. Growth differentiation factor-15: a p53- and demethylation- upregulating gene represses cell proliferation, invasion, and tumorigenesis in bladder carcinoma cells. Sci Rep. 2015; 5: 12870.
60. Lin, t.-y., proteomics of the radioresistant phenotype in head-and-neck cancer: gp96 as a novel prediction marker and sensitizing target for radiotherapy. Int. J. Radiation Oncology Biol. 2010; 78: 246-56.
61. Clarke, M.F., Cancer Stem Cells—Perspectives on Current Status and Future
Directions: AACR Workshop on Cancer Stem Cells. Cancer Res. 2006; 66: 9339-44.
62. Lee LY, Chen YJ, Lu YC, Liao CT, Chen IH, Chang JT, Huang YC, Chen WH, Huang CC, Tsai CY, Cheng AJ. Fascin is a circulating tumor marker for head and neck cancer as determined by a proteomic analysis of interstitial fluid from the tumor microenvironment. Clin Chem Lab Med. 2015; 53: 1031-1641.
63. Peng CH, Liao CT, Peng SC, Chen YJ, Cheng AJ, Juang JL, Tsai CY, Chen TC, Chuang YJ, Tang CY, Hsieh WP, Yen TC. A novel molecular signature identified by systems genetics approach predicts prognosis in oral squamous cell carcinoma. PLoS One. 2011;6(8):e23452.
64. John AS, Rothman VL, Tuszynski GP. Thrombospondin-1 (TSP-1) Stimulates Expression of Integrin alpha6 in Human Breast Carcinoma Cells: A Downstream Modulator of TSP-1-Induced Cellular Adhesion. J Oncol. 2010; 2010:645376. doi: 10.1155/2010/645376. Epub 2010 Jul 7.
65. Gammon L, Mackenzie IC. Roles of hypoxia, stem cells and epithelial-mesenchymal transition in the spread and treatment resistance of head and neck cancer. J Oral Pathol Med. 2016; 45(2):77-82.
66. Choudhari SK, Chaudhary M, Gadbail AR, Sharma A, Tekade S. Oxidative and antioxidative mechanisms in oral cancer and precancer: a review. Oral Oncol. 2014; 50(1): 10-8.
67. Jeong-In Lee, Joann Kang, Martha H. Stipanuk. Differential regulation of glutamate–cysteine ligase subunit expression and increased FAKholoenzyme formation in response to cysteine deprivation. Biochem J. 2006; 393(Pt 1): 181–190.
68. Silvia Menegon, Amedeo Columbano, Silvia Giordano. The Dual Roles of NRF2 in Cancer. Trends in Molecular Medicine. 2016; 22(7): 578-93.
69. Zhang J, Wang X, Vikash V, Ye Q, Wu D, Liu Y, Dong W. ROS and ROS-Mediated Cellular Signaling. Oxid Med Cell Longev. 2016; 2016:4350965.
70. Tai YL, Chen LC, Shen TL. Emerging roles of focal adhesion kinase in cancer. Biomed Res Int. 2015; 2015:690690. doi: 10.1155/2015/690690.
71. Kanteti R, Batra SK, Lennon FE, Salgia R. FAK and paxillin, two potential targets in pancreatic cancer. Oncotarget. 2016; 7(21):31586-601.
72. Sackmann E. How actin/myosin crosstalks guide the adhesion, locomotion and polarization of cells. Biochim Biophys Acta. 2015; 1853(11 Pt B):3132-42.
73. Wickstead B, Gull K. The evolution of the cytoskeleton. J Cell Biol. 2011; 194(4): 513-25.
74. Wilson C, González-Billault C. Regulation of cytoskeletal dynamics by redox signaling and oxidative stress: implications for neuronal development and trafficking. Front Cell Neurosci. 2015; 30(9): 381.
75. Holliday, EB., et al., Proton Radiation Therapy for Head and Neck Cancer:
A Review of the Clinical Experience to Date. Int J Radiat Oncol Biol Phys. 2014;
89(2): 292-302.
76. Guo Y., et al., Identification of genes involved in radioresistance of
nasopharyngeal carcinoma by integrating gene ontology and protein-protein
interaction networks. Int J Oncol. 2012; 40(1): 85-92.
77. Michael Baumann, Mechthild Krause & Richard Hill. Exploring the role of cancer stem cells in radioresistance. Nature Reviews Cancer. 2008; 8: 545-54.
78. Maximilian Diehn, Robert W. Cho, Neethan A. Lobo, Tomer Kalisky, Mary Jo Dorie, Angela N. Kulp, Dalong Qian, Jessica S. Lam, Laurie E. Ailles, Manzhi Wong, Benzion Joshua, Michael J. Kaplan, Irene Wapnir, Frederick M. Dirbas, George Somlo, Carlos Garberoglio, Benjamin Paz, Jeannie Shen, Sean K. Lau, Stephen R. Quake, J. Martin Brown, Irving L. Weissman & Michael F. Clarke. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009, April; 458: 780-783.
79. Loffredo FS, Steinhauser ML, Jay SM, Gannon J, Pancoast JR, Yalamanchi P, Sinha M, Dall'Osso C, Khong D, Shadrach JL, Miller CM, Singer BS, Stewart A, Psychogios N, Gerszten RE, Hartigan AJ, Kim MJ, Serwold T, Wagers AJ, Lee RT. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell. 2013; 153(4): 828-39.
80. Visagie MH, Joubert AM. In vitro effects of 2-methoxyestradiol-bis-sulphamate on reactive oxygen species and possible apoptosis induction in a breast adenocarcinoma cell line. Cancer Cell Int. 2011; 11(1): 43.
81. Clarke OB., Oligomerization at the membrane: potassium channel structure and
function. Adv Exp Med Biol. 2012, 747: 122-36.
82. Vijay Pralhad Kale, Shantu G. Amin, Manoj K. Pandey. Targeting ion channels for cancer therapy by repurposing the approved drugs. Biochimica et Biophysica Acta. 2015; 2747–55.
83. Xiaoke Shi, Yan Zhang, Junheng Zheng, Jingxuan Pan. Reactive Oxygen Species in Cancer Stem Cells. ANTIOXIDANTS & REDOX SIGNALING. 2012, Nov; 11(16): 1215-28.
84. Isah MB, Ibrahim MA. The role of antioxidants treatment on the pathogenesis of malarial infections: a review. Parasitol Res. 2014; 113: 801-9.
85. Li J, Meng Z, Zhang G, Xing Y, Feng L, Fan S, Fan F, Buren B, Liu Q. N-acetylcysteine relieves oxidative stress and protects hippocampus of rat from radiation-induced apoptosis by inhibiting caspase-3. Biomed Phamacother. 2015; 70: 1-6.
86. Buto R, Dubrovska A, Baumann M. Clinical perspectives of cancer stem cell research in radiation oncology. Radiother Oncol. 2013; 108: 388-396.
87. Yang C, Jin K, Tong Y, Cho WC. Therapeutic potential of cancer stem cells. Med Oncol. 2015; 32: 619.
88. Chiu CC, Lee LY, Li YC, Chen YJ, Lu YC, Li YL, Wang HM, Chang JT, Cheng AJ. Grp78 as a therapeutic target for refractory head-neck cancer with CD24-CD44+ stemness phenotype. Cancer Gene Ther. 2013; 20: 606-615.
89. Kano MR, Komuta Y, Iwata C, Oka M, Shirai YT, Morishita Y, Ouchi Y, Kataoka K, Miyazono K. Comparison of the effects of the kinase inhibitors imathinib, sorafenib, and transforming growth factor-beta receptor inhibitor on extravasation of nanoparticles from noevasculature. Cancer Sci. 2009; 1: 173-80.
90. Abe M, Harpel JG, Metz CN, Nunes I, Loskutoff DJ, Rifkin DB. An assay for transforming growth factor-β using cells transfected with a plasminogen activator inhibitor-1 promoter- luciferase construct. Anal Biochem. 1994; 216: 276-84.
91. Heldin CH, Landstrom M, Moustakas A. Mechanism of TGF-β signaling to growth arrest, apopotsis, and epithelial- mesenchymal transition. Curr Opin Cell Biol. 2009; 21: 166-76.
92. Gaarenstroom T, Hill CS. TGF-b signaling to chromatin: how Smads regulate transcription during self-renewal and differentiation. Semin Cell Dev Biol. 2014; 32: 107-18.
93. Schiegnitz E, Kammerer PW, Rode K, Schorn T, Brieger J, Al-Nawas B. Growth differentiation factor 15 as a radiation-induced marker in oral carcinoma increasing radiation resistance. J Oral Pasthol Med. 2016; 45: 63-9.
94. Altena R, Fehrmann RS, Boer H, de Vries EG, Meijer C, Gietema JA. Growth differentiation factor 15 (GDF-15) plasma levels increase during bleomycin- and cisplatin-based treatment of testicular cancer patients and relate to endothelial damage. PLoS One. 2015; 10: e0115372.
95. Meier JC, Haendler B, Seidel H, Groth P, Adams R, Ziegelbauer K, Kreft B, Beckmann G, Sommer A, Kopitz C. Knockdown of platinum- induced growth differentiation factor 15 abrogates p27- mediated tumor growth delay in the chemoresistant ovarian cancer model A2780cis. Cancer Med. 2015; 4: 253-67.
96. Chang JT, Chan SH, Lin CY, Lin TY, Wang HM, Liao CT, Wang TH, Lee LY, Cheng AJ. Differentially expressed genes in radioresistant nasopharyngeal cancer cells: gp96 and GDF15. Mol Cancer Ther. 2007; 6: 2271-9.
97. Westhrin M, Moen SH, Holien T, Mylin AK, Heickendorff L, Olsen OE, Sundan A, Turesson I, Gimsing P, Waage A, Standal T. Growth differentiation factor15 (GDF15) promotes osteoclast differentiation and inhibits osteoblast differentiation and high serum GDF15 levels are associated with multiple myeloma bone disease. Haematologica. 2015; 100: e511-4.
98. Uchiyama T, Kawabata H, Miura Y, Yoshioka S, Iwasa M, Yao H, Sakamoto S, Fujimoto M, Haga H, Kadowaki N, Maekawa T, Takaori-Kondo A. The role of growth differentiation factor 15 in the pathogenesis of primary myelofibrosis. Cancer Med. 2015; 4: 1558-72.
99. Tanno T, Lim Y, Wang Q, Chesi M, Bergsagel PL, Matthews G, Johnstone RW, Ghosh N, Borrello I, Huff CA, Matsui W. Growth differentiating factor 15 enhances the tumor-initiating and self-renewal potential of multiple myeloma cells. Blood. 2014; 123: 725-33.
100. Li J, Yang L, Qin W, Zhang G, Yuan J, Wang F. Adaptive induction of growth differentiation factor 15 attenuates endothelial cell apoptosis in response to high glues stimulus. PLoS One. 2013; 8: e65549.
101. Zhang M, Kleber S, Röhrich M, Timke C, Han N, Tuettenberg J, Martin-Villalba A, Debus J, Peschke P, Wirkner U, Lahn M, Huber PE. Blockade of TGF-β signaling by the TGFβR-I kinase inhibitor LY2109761 enhances radiation response and prolongs survival in glioblastoma. Cancer Res. 2011; 71: 7155-67.
102. Kajino-Sakamoto R, Omori E, Nighot PK, Blikslager AT, Matsumoto K, Ninomlya-Tsuji J. TGF-beta-activated kinase 1 signaling maintains intestinal integrity by preventing accumulation of reactive oxygen species in the intestinal epithelium. J Immunol. 2010; 185: 4729-37.
103. Wang M, Hada M, Huff J, Pluth JM, Anderson J, O'Neill P, Cucinotta FA. Heavy ions can enhance TGF-β mediated epithelial to mesenchymal transition. J Radiat Res. 2012; 53: 51-7.
104. Jin YJ, Lee JH, Kim YM, Oh GT, Lee H. Macrophage inhibitory cytokine-1 stimulates proliferation of human umbilical vein endothelial cells by up-regulating cyclins D1 and E through the PI3K/Akt-, ERK-, and JNK-dependent AP-1 and E2F activation signaling pathways. Cell Signal. 2012; 24: 1485-95.
105. Griner SE, Joshi JP, Nahta R. Growth differentiation factor 15 stimulates rapamycin- sensitive ovarian cancer cell growth and invasion. Biochem Pharmacol. 2013; 85: 46-58.
106. Senapati S, Rachagani S, Chaudhary K, Johansson SL, SinghRK, Batra SK. Overexpression of macrophage inhibitory cytokine-1 induces metastasis of human prostate cancer cells through the FAK-RhoA signaling pathway. Oncogene. 2010; 29: 1293-302.
107. Li C, Wang J, Kong J, Tang J, Wu Y, Xu E, Zhang H, Lai M. GDF15 promotes EMT and metastasis in colorectal cancer. Oncotarget. 2016; 7: 860-72.
108. Xu J, Kimball TR, Lorenz JN, Brown DA, Bauskin AR, Klevitsky R, Hewett TE, Breit SN, Molkentin JD. GDF15/MIC-1 functions as a protective and antihypertrophic factor released from the myocardium in association with SMAD protein activation. Circ Res. 2006; 98: 342-350.
109. Heger J, Schiegnitz E, von Waldthausen D, Anwar MM, Piper HM, Euler G. Growth differentiation factor 15 acts anti-apoptotic and pro-hypertrophic in adult cardiomyocytes. J Cell Physiol. 2010; 224: 120-6.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊