跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.223) 您好!臺灣時間:2025/10/08 04:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:孫正明
研究生(外文):Cheng-Ming Sun
論文名稱:EB病毒第一核蛋白啟動子Qp於第一型巴克氏淋巴瘤細胞中之調控研究
論文名稱(外文):Regulation of EBV EBNA-1 gene promoter Qp in type I BL cells
指導教授:張玉生張玉生引用關係
指導教授(外文):Yu-Sun Chang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:微生物暨免疫學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:58
中文關鍵詞:EB病毒巴克氏淋巴瘤細胞
外文關鍵詞:Epstein-Barr VirusBurkitt's Lymphoma cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
EB病毒(EBV)是屬於人類第四型皰疹病毒,可感染人類B淋巴球細胞及表皮細胞,並與巴克氏淋巴瘤及鼻咽癌有關。一般相信在這些腫瘤細胞中EBV是以潛伏的狀態存在,同時也會表現如EBNA-1及LMP-1等潛伏基因產物。
先前的研究指出,在第一型巴克氏淋巴瘤如Rael cells中,EBNA-1的訊息RNA是由Q啟動子所引導,而不同於活體外建立之淋巴芽細胞株,因為EBNA-1在活體外之淋巴芽細胞株中是由C/W啟動子所引導的。為了了解Q啟動子在第一型巴克氏淋巴瘤細胞中的活性調節機制,我將Q啟動子做一系列的刪除或突變,然後送入Rael cells中觀察其活性改變。結果指出在Q啟動子上從-125到-50區域刪除對Q啟動子的活性並不具重要性,而-50到-37區域刪除對Q啟動子的活性則有決定性的影響,會造成Q啟動子活性喪失。從-50到-37這段區域包含了一個細胞因子Smad4的蛋白附著點,若將Q啟動子上Smad4蛋白附著點以突變處理,則Q啟動子的活性也會降低約1/2到1/3。Smad4是屬於細胞激素TGF-訊息傳遞途徑中的中介物質,受到TGF-刺激後,Smad4可與Smad2/Smad3等細胞因子結合,進入細胞核中。我將Q啟動子與Smad3/Smad4一起送入Rael cells中並將細胞以TGF-處理。實驗結果顯示細胞在TGF-處理的情形下Q啟動子的活性約會降低製原來的1/2到1/3,而在電泳帶阻滯分析中也證實Smad4確實會與Q啟動子結合。本實驗證實了TGF-確實會經由Smad4來調降Q啟動子的活性,然而其真實的生物特性及其調節機制仍有待進一步的研究。

EBNA 1 gene of Epstein-Barr Virus (EBV) is transcribed from a latent promoter Qp in Burkitt’s lymphoma cell line, Rael, which is different from the Cp that is pre-ferentially activated in lymphoblastoid cell lines. In order to understand the mechanism that modulates the Qp activity, Qp and its deletion or site-specific mutant constructs were transfected into Rael cell and promoter activity was determined. Results showed that the region between —125 to —50 was not important for the minimal promoter activity of Qp. On the other hand, deletion to —37 reduced the promoter activity significantly. This region includes a binding motif recognized by Smad 4, a mediator involved in the TGF- signaling pathway. The binding was also proved by EMSA. Therefore, a site-specific mutation was made within this region and was then tested for its promoter activity. Data indicated the promoter activity was reduced to a basal level, and slightly higher then the deletion (-37) mutant. To analyze the effect of TGF- on Qp, promoter construct containing —50 to +20(pGL2B-50)and its Smad4 binding site mutant, pGL2B-50m4 were co-transfected with Smad3 and Smad4-expressing vector into Rael cells. The promoter strength was measured by the luciferase activity. Results showed that the minimal Qp(-50 to +20)activity was down-regulated upon TGF- stimulation through the Smad4 binding site. The mechanisms involved in this transcriptional repression and its biological significance were discussed.

Abstract 1
Introduction 3
Methods and materials 15
Results 22
Discussion 25
Reference 27
Figures 41
Tables 57

Reference
Abbot, S. D., Rowe, M., Cadwallader, K., Ricksten, A., Gordon, J., Wang, F., Rymol, L., and Rickinson, A. B. (1990). Epstein-Barr virus nuclear antigen 2 induces experssion of the virus-encoded latent membrane protein. J. Virol. 64, 2126-2134.
Alfieri, C., Birkenbach, M., and Kieff, E. (1991). Early events in Epstein-Barr virus infection of human B-lymphocytes. Virology 181, 595-608.
Ambinder, R. F., Mullen, M. A., Chang, Y. N., Hayward, G. S., and Hayward, S. D. (1991). Functional domains of Epstein-Barr virus nuclear antigen EBNA-1. J. Virol 65, 1466-1478.
Armstrong, R. W., Armstrong, M. J., Yu, M. C., and Henderson, B. E. (1983). Salted fish and inhalants as risk factors for nasopharyngeal carcinoma in Malaysian Chinese. Cancer Res. 43, 2967-2970.
Baichwal, V., and Sugden, B. (1988). Transformation of Balb 3T3 cells by the BNLF-1 gene of Epstein-Barr virus. Oncogene 2, 461-467.
Barriga, F., Kiwanuka, J., Alvarez-Mon, M., Shiramizu, B., Huber, B., Levine, P., and Magrath, I. (1988). Significance of chromosome 8 breakpoint location in Burkitt's lymphoma: correlation with geographical origin and association with Epstein-Barr virus. Curr. Top. Microbiol. Immunol. 141, 128-137.
Bauer, G., Hofler, P., and zur Hausen, H. (1982). Epsein-Barr virus induction by a serum factor I. Induction and cooperation with additional inducers. Virology 121, 184-194.
Birkenbach, M., Liebowitz, D., Wang, F., Sample, J., and Kieff, E. (1989). Epstein-Barr virus latent infection membrane protein increases vimentin expression in human B-cell lines. J. Virol. 63, 4079-4084.
Birnboim, H. C., and Doly, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7, 1513-1523.
Bodescot, M., Perricaudet, M., and Farrell, P. J. (1987). A promoter for the highly spliced EBNA family of RNAs of Epstein-Barr virus. J. Virol. 61, 3424-3430.
Bornkamm, G. W., Hudewitz, J., Freese, U. K., and Zimber, U. (1982). Deletion of the nontransforming Epstein-Barr virus strain P3HR-1 causes fusion of the large internal repeat to the subregion. J. Virol. 43, 952-968.
Brooks, L., Yao, Q. Y., Rickinson, A. B., and Young, L. S. (1992). Epstein-Barr virus latent gene transcription in nasopharyngeal carcinoma cells: coexpression of EBNA1, LMP1, and LMP2 transcripts. J. Virol. 66, 2689-2697.
Burkitt, D. (1958). A sarcoma involving the jaws in African children. Brit. J. Surg. 45, 218-223.
Busson, P., McCoy, R., Sadler, R., Gilligan, K., Tursz, T., and Raab-Traub, N. (1992). Consistent transcription of the Epstein-Barr virus LMP2 gene in nasopharyngeal carcinoma. J. Virol. 6, 3257-3262.
Carcamo, J., Weis, F. M., Ventura, F., Wieser, R., Wrana, J. L., Attisano, L., and Massague, J. (1994). Type I receptors specify growth-inhibitory and transcriptional responses to transforming growth factor beta and activin. Mol. Cell. Biol. 14, 3810-3821.
Chang, M. H., Ng, C. K., Lin, Y. J., Liang, C. L., Chung, P. J., Chen, M. L., Tyan, Y. S., Hsu, C. Y., Shu, C. H., and Chang, Y. S. (1997). Identification of a promoter for the latent membrane protein 1 gene of Epstein-Barr virus that is specifically activated in human epithelial cells. DNA Cell Biol. 16, 829-837.
Chaouchi, N., Arvanitakis, L., Auffredou, M. T., Blanchard, D. A., Vazquez, A., and Sharma, S. (1995). Characterization of transforming growth factor-beta 1 induced apoptosis in normal human B cells and lymphoma B cell lines. Oncogene 11, 1615-1622.
Chasserot-Golaz, S., Schuster, C., Dietrich, J. B., Beck, G., and Lawrence, D. A. (1988). Antagonistic action of RU38486 on the activity of transforming growth factor-beta in fibroblasts and lymphoma cells. J. Steroid Biochem. 30, 381-385.
Chen, J. Y., Chen, C. J., Liu, M. Y., Cho, S. M., Hsu, M. M., Lynn, T. C., Shieh, T., Tu, S. M., Lee, H. H., Kuo, S. L., and al., e. (1987). Antibodies to Epstein-Barr virus-specific DNase in patients with nasopharyngeal carcinoma and control groups. J. Med. Virol. 23, 11-21.
Chen, M. L., Tsai, C. N., Liang, C. L., Shu, C. H., Huang, C. R., Sulitzeanu, D., Liu, S. T., and Chang, Y. S. (1992). Cloning and characterization of the latent membrane protein (LMP) of a specific Epstein-Barr virus variant derived from the nasopharyngeal carcinoma in the Taiwanese population. Oncogene 7, 2131-2140.
Chen, X., Rubock, M. J., and Whitman, M. (1996). A transcriptional partner for MAD proteins in TGF-beta signalling. Nature 383, 691-696.
Chen, Y. G., and Massague, J. (1999). Smad1 recognition and activation by the ALK1 group of transforming growth factor-beta family receptors. J. Biol. Chem. 274, 3672-3677.
Cheng, Y. C., Chen, J. Y., Glaser, R., and Henle, W. (1980). Frequency and levels of antibodies to Epstein-Barr virus-specific DNase are elevated in patients with nasopharyngeal carcinoma. Proc. Natl. Acad. Sci. U. S. A. 77, 6162-6165.
Cheung, A., and Kieff, E. (1982). Epstein-Barr virus DNA XI : The nucleotide sequence of the large internal repeat in EBV DNA. J. Virol. 44, 286-94.
Cohen, J. I., Wang, F., Mannick, J., and Kieff, E. (1989). Epstein-Barr virus nuclear protein 2 is a key determinant of lymphocyte transformation. Proc. Natl. Acad. Sci. USA 86, 9558-9562.
Dambaugh, T., Beisel, C., Hummel, M., King, W., Fennewald, S., Cheung, A., Heller, M., Raab-Traub, N., and Kieff, E. (1980). Epstein-Barr virus (B95-8) DNA VII: molecular cloning and detailed mapping. Proc. Natl. Acad. Sci. U. S. A. 77, 2999-3003.
de Turenne-Tessier, M., Ooka, T., Calender, A., de The, G., and Daillie, J. (1989). Relationship between nasopharyngeal carcinoma and high antibody titers to Epstein-Barr virus-specific thymidine kinase. Int. J. Cancer 43, 45-48.
Deacon, E. M., Pallesen, G., Niedobitek, G., Crocker, J., Brooks, L., Rickinson, A. B., and Young, L. S. (1993). Epstein-Barr virus and Hodgkin's disease: transcriptional analysis of virus latency in the malignant cells. J. Exp. Med. 177, 339-349.
Dennler, S., Itoh, S., Vivien, D., ten Dijke, P., Huet, S., and Gauthier, J. M. (1998). Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J. 17, 3091-3100.
Desgranges, C., Wolf, H., De-The, G., Shanmugaratnam, K., Cammoun, N., Ellouz, R., Klein, G., Lennert, K., Munoz, N., and Zur Hausen, H. (1975). Nasopharyngeal carcinoma. X. Presence of epstein-barr genomes in separated epithelial cells of tumours in patients from Singapore, Tunisia and Kenya. Int. J. Cancer. 16, 7-15.
Devergne, O., Hatzivassiliou, E., Izumi, K., Kaye, K., Kleijnen, M., Kieff, E., and Mosialos, G. (1996). Association of TRAF1, TRAF2, and TRAF3 with an Epstein-Barr virus LMP1 domain important for B-lymphocyte transformation: role in NF-kappaB activation. Mol. Cell. Biol. 16, 7098-7108.
di Renzo, L., Altiok, A., Klein, G., and Klein, E. (1994). Endogenous TGF-beta contributes to the induction of the EBV lytic cycle in two Burkitt lymphoma cell lines. Int. J. Cancer 57, 914-919.
Dickson, R. I. (1981). Nasopharyngeal carcinoma: an evaluation of 209 patients. Laryngoscope 91, 333-354.
Epstein, M. A., and Achong, B. G. (1968b). Observation on the nature of the herpes-type EB virus in cultured Burkitt lymphoblasts, using a specific immunofluorescence test. J. Nat. Cancer Inst. 40, 609-621.
Epstein, M. A., and Achong, B. G. (1968a). Specific immunofluorescence test for the herpes-type EB virus of Burkitt's lymphoblasts, authenticated by electron microscopy. J. Nat. Cancer Inst. 40, 593-607.
Epstein, M. A., and Barr, Y. M. (1964). Cultivation in vitro of human lymphoblast from Burkitt's malignant lymphoma. Lancet 1, 252-253.
Evans, A. S., and Niederman, J. C. (1982). EBV-IgA and new heterophile antibody tests in diagnosis of infectious mononucleosis. Am. J. Clin. Pathol. 77, 555-560.
Fahraeus, R., Fu, H. L., Ernberg, I., Finke, J., Rowe, M., Klein, G., Falk, K., Nilsson, E., Yadav, M., Busson, P., and al., e. (1988). Expression of Epstein-Barr virus-encoded proteins in nasopharyngeal carcinoma. Int. J. Cancer 42, 329-338.
Falk, K., Ernberg, I., Sakthivel, R., Davis, J., Christensson, B., Luka, J., Okano, M., Grierson, H., Klein, G., and Purtilo, D. T. (1990). Expression of Epstein-Barr virus-encoded proteins and B-cell markers in fatal infectious mononucleosis. Int. J. Cancer 46, 976-984.
Frappier, L., Goldsmith, K., and Bendell, L. (1994). Stabilization of the EBNA1 protein on the Epstein-Barr virus latent origin of DNA replication by a DNA looping mechanism. J. Biol, Chem 269, 1057-1062.
Frappier, L., and O'Donnell, M. (1992). EBNA1 distorts oriP, the Epstein-Barr virus latent replication origin. J. Virol. 66, 1786-1790.
Frappier, L., and O'Donnell, M. (1991). Epstein-Barr nuclear antigen 1 mediates a DNA loop within the latent replication origin of Epstein-Barr virus. Proc. Natl. Acad. Sci. U S A 88, 10875-10879.
Gahn, T. A., and Sugden, B. (1995). An EBNA-1-dependent enhancer acts from a distance of 10 kilobase pairs to increase expression of the Epstein-Barr virus LMP gene. J. Virol. 69, 2633-2636.
Ghosh, S., Gifford, A. M., Riviere, L. R., Tempst, P., Nolan, G. P., and Baltimore, D. (1990). Cloning of the p50 DNA binding subunit of NF-kappa B: homology to rel and dorsal. Cell 62, 1019-1029.
Given, D., and Kieff, E. (1978). DNA of Epstein-Barr virus. IV. Linkage map of restriction enzyme fragments
of the B95-8 and W91 strains of Epstein-Barr Virus. J. Virol. 28, 524-542.
Given, D., and Kieff, E. (1979). DNA of Epstein-Barr virus. VI. Mapping of the internal tandem reiteration. J. Virol 31, 315-324.
Given, D., Yee, D., Griem, K., and Kieff, E. (1979). Dna of Epstein-Barr virus V. Direct repeats of the ends Epstein-Barr DNA. J. Virol. 30, 852-862.
Gregory, C. D., Rowe, M., and Rickinson, A. B. (1990). Different Epstein-Barr virus-B cell interactions in phenotypically distinct clones of a Burkitt's lymphoma cell line. J. Gen. Virol. 71, 1481-1495.
Gutkind, J., Link, D., Katamine, S., Lacal, P., Miki, T., Ley, T., and Robbins, K. (1991). A novel c-fgr exon utilized in Epstein-Barr virus-infected B lymphocytes but not in normal monocytes. Mol, cell. Biol. 11.
Hamilton-Dutoit, S. J., Pallesen, G., Franzmann, M. B., Karkov, J., Black, F., Skinhoj, P., and Pedersen, C. (1991). AIDS-related lymphoma. Histopathology, immunophenotype, and association with Epstein-Barr virus as demonstrated by in situ nucleic acid hybridization. Am. J. Pathol. 138, 149-163.
Hammarskjold, M. L., and Simurda, M. C. (1992). Epstein-Barr virus latent membrane protein transactivates the human immunodeficiency virus type 1 long terminal repeat through induction of NF-kappa B activity. J. Virol. 66, 6496-6501.
Hammerschmidt, W., and Sugden, B. (1989). Genetic analysis of immortalizing function of Epstein-Barr virus in human B lymphocytes. Nature 340, 393-397.
Hayward, S. D., Nogee, D. L., and Hayward, G. S. (1980). Organization of repeated regions within the Epstein-Barr virus DNA molecule. J. Virol. 33, 507-521.
Heller, M., van Santen, V., and Kieff, E. (1982). Simple repeat sequence in Epstein-Barr virus DNA is transcribed in latent and productive infections. J. Virol. 44, 311-320.
Henderson, B. E., Louie, E., SooHoo Jing, J., Buell, P., and Gardner, M. B. (1976). Risk factors associated with nasopharyngeal carcinoma. N. Engl. J. Med. 295, 1101-1106.
Henkel, T., Ling, P., Hayward, S., and Peterson, M. (1994). Mediation of Epstein-Barr virus EBNA2 transactivation by recombination signal-binding protein J kappa. Science 265, 92-95.
Henle, G., and Henle, W. (1966). Immunolofluorescence in cells derived from Burkitt's lymphoma. J. Bacteriol. 91, 1248-1256.
Henle, G., Henle, W., and Horwitz, C. A. (1974). Antibodies to Epstein-Barr virus-associated nuclear antigen in infectious
mononucleosis. J. Infect. Dis. 130, 231-239.
Henle, W., Henle, G., Zajac, B. A., Pearson, G., Waubke, R., and Scriba, M. (1970). Differential reactivity of human serums with early antigens induced by Epstein-Barr virus. Science 169, 188-190.
Hennessy, K., Heller, M., van Santen, V., and Kieff, E. (1983). Simple repeat array in Epstein-Barr virus DNA encodes part of the Epstein-Barr nuclear antigen. Science 220, 1396-1398.
Hitt, M. M., Allday, M. J., Hara, T., Karran, L., Jones, M. D., Busson, P., Tursz, T., Ernberg, I., and Griffin, B. E. (1989). EBV gene expression in an NPC-related tumour. EMBO J. 8, 2639-2651.
Hoodless, P. A., Haerry, T., Abdollah, S., Stapleton, M., O'Connor, M. B., Attisano, L., and Wrana, J. L. (1996). MADR1, a MAD-related protein that functions in BMP2 signaling pathways. Cell 85, 489-500.
Howe, J. G., and Shu, M. D. (1989). Epstein-Barr virus small RNA (EBER) genes: unique transcription units that combine RNA polymerase II and III promoter elements. Cell 57, 825-834.
Howe, J. G., and Steitz, J. A. (1986). Localization of Epstein-Barr virus-encoded small RNAs by in situ hybridization. Proc. Natl. Acad. Sci. U. S. A. 83, 9006-9010.
Hudewentz, J., Bornkamn, G. W., and zur Hausen, H. (1980). Effect of the diterpene ester TPA on Esptein-Barr virus antigen and DNA synthesis in producer and nonproducer cell lines. Virology 100, 175-178.
Hutt-Fletcher, L. M., Fowler, E., Lambris, J. D., Feingey, R. J., Simmons, J. G., and Ross, G. D. (1983). Studies of the Epstein-Barr virus receptors found on Raji cells. A comparison of lymphocyte binding sites for Esptein-Barr and C3d. J. Immunol. 130, 1309-1312.
Jondal, M., Klein, G., Oldstone, M., Bokish, V., and Yefenof, E. (1976). Surface markers on human B and T lymphocytes VIII: association between complement and Esptein-Barr virus receptors on human lymphoid cells. Scand. J. Immunol. 5, 401-410.
Jones, C. H., Hayward, S. D., and Rawlin, D. R. (1989). Interaction of the lymphocyte-derived Epstein-Barr nuclear antigen EBNA-1 with its DNA binding site. J. Virol. 63, 101-110.
Kaye, K., Izumi, K., and Kieff, E. (1993). Epstein-Barr virus latent membrane protein 1 is essential for B-lymphocyte growth transformation. Proc. Natl. Acad. Sci. U S A 90, 9150-9154.
Kaye, K., Izumi, K., Mosialos, G., and Kieff, E. (1995). The Epstein-Barr virus LMP1 cytoplasmic carboxy terminus is essential for B-lymphocyte transformation; fibroblast cocultivation complements a critical function within the terminal 155 residues. J. Virol. 69, 675-683.
Kehrl, J. H., Roberts, A. B., Wakefield, L. M., Jakowlew, S., Sporn, M. B., and Fauci, A. S. (1986a). Transforming growth factor beta is an important immunomodulatory protein for human B lymphocytes. J. Immunol. 137, 3855-3860.
Kehrl, J. H., Wakefield, L. M., Roberts, A. B., Jakowlew, S., Alvarez-Mon, M., Derynck, R., Sporn, M. B., and Fauci, A. S. (1986b). Production of transforming growth factor beta by human T lymphocytes and its potential role in the regulation of T cell growth. J. Exp. Med. 163, 1037-1050.
Kieff, E. (1996). Epstein-Barr virus and its replication., 3rd ed. Edition, B. N. Field, D. M. Knipe and P. M. Howley, eds. (New York: Raven Press).
Kieran, M., Blank, V., Logeat, F., Vandekerckhove, J., Lottspeich, F., Le Bail, O., Urban, M. B., Kourilsky, P., Baeuerle, P. A., and Israel, A. (1990). The DNA binding subunit of NF-kappa B is identical to factor KBF1 and homologous to the rel oncogene product. Cell 62, 1007-1018.
Kintner, C., and Sugden, B. (1979). The structure of the termini of the DNA of Epstein-Barr virus. cell 17, 661-671.
Knutson, J. C. (1990). The level of c-fgr RNA is incresed by EBNA-2, an Epstein-Barr virus gene required for B-cell immortalization. J. Virol. 64, 2530-2536.
Kretzschmar, M., Liu, F., Hata, A., Doody, J., and Massague, J. (1997). The TGF-beta family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase. Genes Dev. 11, 984-995.
Kumar, A., Rogers, T., Maizel, A., and Sharma, S. (1991). Loss of transforming growth factor beta 1 receptors and its effects on the growth of EBV-transformed human B cells. J. Immunol. 147, 998-1006.
Lanier, A. P., Bornkamm, G. W., Henle, W., Henle, G., Bender, T. R., Talbot, M. L., and Dohan, P. H. (1981). Association of Epstein-Barr virus with nasopharyngeal carcinoma in Alaskan native patients: serum antibodies and tissue EBNA and DNA. Int. J. Cancer 28, 301-305.
Lear, A. L., Rowe, M., Kurilla, M. G., Lee, S., Henderson, S., Kieff, E., and Rickinson, A. B. (1992). The Epstein-Barr virus (EBV) nuclear antigen 1 BamHI F promoter is activated on entry of EBV-transformed B cells into the lytic cycle. J. Virol. 66, 7461-7468.
Levitskaya, J., Coram, M., Levitsky, V., Imreh, S., Steigerwald-Mullen, P. M., Klein, G., Kurilla, M. G., and Masucci, M. G. (1995). Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature 375, 685-688.
Li, S. N., Chang, Y. S., and Liu, S. T. (1996). Effect of a 10-amino acid deletion on the oncogenic activity of latent membrane protein 1 of Epstein-Barr virus. Oncogene 12, 2129-2135.
Liebowitz, D., Wang, D., and Kieff, E. (1986). Orientation and patching of the latent infection membrane protein encoded by Epstein-Barr virus. J. Virol. 58, 233-237.
Lin, J. C., Smith, M. C., and Pagano, J. S. (1984). Prolonged inhibitory effect of 9-(1,3-dihydroxy-2-propoxymethyl)guanine against replication of Epstein-Barr virus. J, Virol. 50, 50-55.
Lindahl, T., Adams, A., Bjursell, G., Bornkamm, G. W., Kaschka-Dierich, G., and Jehn, U. (1976). Covalently closed circular duplex DNA of Espetin-Barr virus in a human lymphoid cell line. J. Mol. Biol. 102, 511-30.
Lindahl, T., Klein, G., Reedman, B. M., Johansson, B., and Singh, S. (1974). Relationship between Epstein-Barr virus (EBV) DNA and the EBV-determined nuclear antigen (EBNA) in Burkitt lymphoma biopsies and other lymphoproliferative malignancies. nt. J. Cancer 13, 764-772.
Liu, M. Y., Chou, W. H., Nutter, L., Hsu, M. M., Chen, J. Y., and Yang, C. S. (1989). Antibody against Epstein-Barr virus DNA polymerase activity in sera of patients with nasopharyngeal carcinoma. J. Med. Virol. 28, 101-105.
Lomo, J., Blomhoff, H. K., Beiske, K., Stokke, T., and Smeland, E. B. (1995). TGF-beta 1 and cyclic AMP promote apoptosis in resting human B lymphocytes. J. Immunol. 154, 1634-1643.
Longnecker, R., and Kieff, E. (1990). A second Epstein-Barr virus membrane protein (LMP2) is expressed in latent infection and colocalizes with LMP1. J. Virol. 64, 2319-2326.
Lu, S. J., Day, N. E., Degos, L., Lepage, V., Wang, P. C., Chan, S. H., Simons, M., McKnight, B., Easton, D., Zeng, Y., and al, e. (1990). Linkage of a nasopharyngeal carcinoma susceptibility locus to the HLA region. Nature 346, 470-471.
Luka, J., Siegert, W., and Klein, G. (1977). Solubilization of the Epstein-Barr virus-determined nuclear antigen and its characterization as a DNA-binding protein. J. Virol. 22, 1-8.
Macias-Silva, M., Abdollah, S., Hoodless, P. A., Pirone, R., Attisano, L., and Wrana, J. L. (1996). MADR2 is a substrate of the TGFbeta receptor and its phosphorylation is required for nuclear accumulation and signaling. Cell 87, 1215-1224.
Maekawa, T., Sakura, H., Sudo, T., and Ishii, S. (1989). Putative metal finger structure of the human immunodeficiency virus type 1 enhancer binding protein HIV-EP1. J. Biol. Chem. 264, 14591-14593.
Magrath, I. (1990). The pathogenesis of Burkitt's lymphoma. Adv. Cancer Res. 55, 133-269.
Magrath, I., Jain, V., and Bhatia, K. (1992). Epstein-Barr virus and Burkitt's lymphoma. Seminars in cancer Biology 3, 285-295.
Massague, J. (1998). TGF-beta signal transduction. Annu. Rev. Biochem. 67, 753-791.
Masucci, M. G., Zhang, Q. J., Gavioli, R., De Campos-Lima, P. O., Murray, R. J., Brooks, J., Griffin, H., Ploegh, H., and Rickinson, A. B. (1992). Immune escape by Epstein-Barr virus (EBV) carrying Burkitt's lymphoma: in vitro reconstitution of sensitivity to EBV-specific cytotoxic T cells. Int. Immunol. 4, 1283-1292.
Matsunami, N., Hamagushi, Y., Yananoto, Y., Kuze, K., Kangawa, K., Matsuo, H., Kawaichi, M., and Honjo, T. (1989). A protein binding to the JK recombination sequences if immunoglobulin genes contains a sequence related to the integrase motif. Nature 342, 934-937.
Middleton, T., and Sugden, B. (1992). EBNA-1 can link the enhamcer element to the initator element of the Epstein-Barr virus plasmids origin of DNA replication. J. Virol. 66, 489-495.
Moorthy, R., and Thorley-Lawson, D. (1993). All three domains of the Epstein-Barr virus-encoded latent membrane protein LMP-1 are required for transformation of rat-1 fibroblasts. J. Virol. 67, 1638-1646.
Mosialos, G., Birkenbach, M., Yalamanchili, R., VanArsdale, T., Ware, C., and Kieff, E. (1995). The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell 80, 389-399.
Mueller-Lantzsch, N., Lenoir, G. M., Sauter, M., Takaki, K., Bechet, J. M., Kuklil-Roos, C., Wunderlich, D., and Bornkamm, G. W. (1985). Identification of the coding region for a second Epstein-Barr virus nuclear antigen (EBNA-2) by transfection of cloned DNA fragments. EMBO J. 4, 1805-1811.
Nabel, G., and Baltimore, D. (1987). An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 326, 711-713.
Nakao, A., Imamura, T., Souchelnytskyi, S., Kawabata, M., Ishisaki, A., Oeda, E., Tamaki, K., Hanai, J., Heldin, C. H., Miyazono, K., and ten Dijke, P. (1997). TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J. 16, 5353-5362.
Nemerow, G., Mold, C., Keivens-Schwend, V., Tollefson, V., and Cooper, N. R. (1987). Identification of gp350as the glycoprotein mediating attachment of Epstein-Barr virus to the Espetin-Barr virus C3d receptor of B cells: sequence homology of gp350 and C3 complement fragment C3d. J. Virol. 61, 1416-1420.
Neri, A., Barriga, F., Inghirami, G., Knowles, D. M., Neequaye, J., Magrath, I. T., and Dalla-Favera, R. (1991). Epstein-Barr virus infection precedes clonal expansion in Burkitt's and acquired immunodeficiency syndrome-associated lymphoma. Blood 77, 1092-1095.
Nishimura, R., Kato, Y., Chen, D., Harris, S. E., Mundy, G. R., and Yoneda, T. (1998). Smad5 and DPC4 are key molecules in mediating BMP-2-induced osteoblastic differentiation of the pluripotent mesenchymal precursor cell line C2C12. J. Biol. Chem. 273, 1872-1879.
Nomura, N., Zhao, M. J., Nagase, T., Maekawa, T., Ishizaki, R., Tabata, S., and Ishii, S. (1991). HIV-EP2, a new member of the gene family encoding the human immunodeficiency virus type 1 enhancer-binding protein. Comparison with HIV-EP1/PRDII-BF1/MBP-1. J. Biol. Chem. 266, 8590-8594.
Oberhammer, F. A., Pavelka, M., Sharma, S., Tiefenbacher, R., Purchio, A. F., Bursch, W., and Schulte-Hermann, R. (1992). Induction of apoptosis in cultured hepatocytes and in regressing liver by transforming growth factor beta 1. Proc. Natl. Acad. Sci. U. S. A. 89, 5408-5412.
Ohno, S., Luka, J., Lindahl, T., and Klein, G. (1977). Identification of a purified complement-fixing antigen as the Epstein-Barr-virus determined nuclear antigen (EBNA) by its binding to metaphase chromosomes. Proc. Natl. Acad. Sci. U. S. A. 74, 1605-1609.
Old, L. J., Clifford, P., and Boyse, E. A. (1966). Precipitating antibody in human serum to an antigen present in clutured Burkitt's lymphoma cells. Proc. Natl. Acad. Sci. U.S.A 56, 1699-1704.
Orlowski, R., and Miller, G. (1991). Single-stranded dtructures are present within plasmids containing the Epstein-Barr virus latent origion of replication. J. Virol. 65, 677-686.
Pagano, J. S., Huang, C. H., Klein, G., de-The, G., Shanmugaratnam, K., and Yang, C. S. (1975). Homology of Epstein-Barr virus DNA in nasopharyngeal carcinomas from Kenya, Taiwan, Singapore and Tunisia. IARC Sci. Publ. 11, 179-190.
Qu, L., and Rowe, D. T. (1992). Epstein-Barr virus latent gene expression in uncultured peripheral blood lymphocytes. J. Virol. 66, 3715-3724.
Raab-Traub, N., Hood, R., Yang, C. S., Henry, B. d., and Pagano, J. S. (1983). Epstein-Barr virus transcription in nasopharyngeal carcinoma. J. Virol. 48, 580-590.
Rawlins, D. R., Milman, G., Harward, S. D., and Harward, G. S. (1985). Sequene specific DNA binding of the Epstein-Barr virus nuclear antigen(EBNA-1) to clustered sites in the plasmids maitenance region. Cell 42, 859-868.
Reedman, B. M., and Klein, G. (1973). Cellular localization of an Epstein-Barr virus (EBV)-associated complement-fixing antigen in producer and non-producer lymphoblastoid cell lines. Int. J. Cancer 11, 499-520.
Reisman, D., and Sugden, B. (1986). trans-activation of an Epstein-Barr virus(EBV) transcriptional enhancer by the EBV nuclear antigen 1. Mol. Cell Biol. 6, 3838-3846.
Reisman, D., Yates, J., and Sugden, B. (1985). A putayuve origin of replication of plasmids derived from Epstein-Barr virus is composed of two cis-acting components. Mol. Cell. Biol. 5, 1822-1832.
Rotello, R. J., Lieberman, R. C., Purchio, A. F., and Gerschenson, L. E. (1991). Coordinated regulation of apoptosis and cell proliferation by transforming growth factor beta 1 in cultured uterine epithelial cells. Proc. Natl. Acad. Sci. U. S. A. 88, 3412-3415.
Rowe, D. T., Rowe, M., Evan, G. I., Wallace, L. E., Farrell, P. J., and Rickinson, A. B. (1986). Restricted expression of EBV latent genes and T-lymphocyte-detected membrane antigen in Burkitt's lymphoma cells. EMBO J. 5, 2599-2607.
Rowe, M., Lear, A. L., Croom-Carter, D., Davies, A. H., and Rickinson, A. B. (1992). Three pathways of Epstein-Barr virus gene activation from EBNA1-positive latency in B lymphocytes. J. Virol. 66, 122-131.
Rowe, M., Rowe, D. T., Gregory, C. D., Young, L. S., Farrell, P. J., Rupani, H., and Rickinson, A. B. (1987). Differences in B cell growth phenotype reflect novel patterns of Epstein-Barr virus latent gene expression in Burkitt's lymphoma cells. EMBO J. 6, 2743-2751.
Sadler, R. H., and Raab-Traub, N. (1995). The Epstein-Barr virus 3.5-kilobase latent membrane protein 1 mRNA initiates from a TATA-Less promoter within the first terminal repeat. J. Virol. 69, 4577-4581.
Saemundsen, A. K., Kallin, B., and Klein, G. (1980). Effect of n-butyranteon cellular and viral DNA synthesis un cell latently infected with Epstein-Barr virus. Virology 107, 557-561.
Sample, J., Henson, E. B., and Sample, C. (1992). The Epstein-Brr virus nuclear protein 1 promoter active in type I latency is autoregulated. J. Virol. 66, 4654-4661.
Schaefer, B. C., Paulson, E., Strominger, J. L., and Speck, S. H. (1997). Constitutive activation of Epstein-Barr virus (EBV) nuclear antigen 1 gene transcription by IRF1 and IRF2 during restricted EBV latency. Mol. Cell. Biol. 17, 873-886.
Shah, W. A., Ambinder, R. F., Hayward, G. S., and Hayward, S. D. (1992). Binding of EBNA-1 to DNA creates a protease-resistant domain that encompasses the DNA recognition and dimerization functions. J. Virol. 66, 3355-3362.
Shanmugaratnam, K. (1991). World Health Organization series International histological classification of tumours, 2nd edition Edition.
Sinclair, A. J., Palmero, I., Peters, G., and Farrel, P. J. (1994). EBNA-2 amd EBNA-LP cooperate to cause G0 to G1 transition during immortalization of resting human B lymphocytes by Epstein-Barr virus. EMBO J. 13, 3321-3328.
Song, C. Z., Siok, T. E., and Gelehrter, T. D. (1998). Smad4/DPC4 and Smad3 mediate transforming growth factor-beta (TGF-beta) signaling through direct binding to a novel TGF-beta-responsive element in the human plasminogen activator inhibitor-1 promoter. J. Biol. Chem. 273, 29287-29290.
Su, W., Middleton, T., Sugden, B., and Echols, H. (1991). DNA looping between the origin of replication of Epstein-Barr virus and its enhance site: stablization of an origin complex with Epstein-Barr nuclear antigen 1. Proc. Natl. Acad. Sci. USA 88, 10870-10874.
Sudo, T., Ozawa, K., Soeda, E. I., Nomura, N., and Ishii, S. (1992). Mapping of the human gene for the human immunodeficiency virus type 1 enhancer binding protein HIV-EP2 to chromosome 6q23-q24. Genomics 12, 167-170.
Sugden, B., and Warren, N. (1989). A promoter of Epstein-Barr virus that can function during latent infection can transactived by EBNA-1, a viral protein required for viral DNA replication during latent infection. J. Virol. 63, 2644-2649.
Tomkinson, B., and Kieff, E. (1992). Using second site homologous recombination to demonstrate that Epstein-Barr virus nuclear protein EBNA-3B is not important for B-lymphocyte infection or growth transformation in virto. J. Virol. 66, 2893-2903.
Tomkinson, B., Robertson, E., and Kieff, E. (1993). Epstein-Barr virus nuclear proteins(EBNA)3A and 3C are essential for B lymphocyte growth transformation. J. Virol. 67, 2014-2025.
Tsai, C. N., Liu, S. T., and Chang, Y. S. (1995). Identififcantion of a noval promoter located within BamH1Q region of Epstein-Barr virus genome for EBNA1 gene. DNA Cell Biol. 14, 767-776.
Wang, D., Liebowitz, D., and Kieff, E. (1985). An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell 43, 831-840.
Wang, D., Liebowitz, D., and Kieff, E. (1988). The truncated dorm of the Epatein- Barr virus latent-infection membrane protein expressed in virus replication does not transform rodent fibroblast. J. Virol. 62, 2337-2346.
Wang, F., Gregory, C. D., Rowe, M., Rickinson, A. B., Wang, D., Birkenbach, M., Kikutani, H., Kishimoto, T., and Kieff, E. (1987). Epstein-Barr virus nuclear antigen 2 specifically induces expression of the B-cell activation antigen CD23. Proc. Natl. Acad. Sci. USA 84, 3452-3457.
Wang, F., Gregory, C. D., Sample, C., Rowe, M., Liebowitz, D., Murray, R., Rickinson, A. B., and Kieff, E. (1990). Epstein-Barr virus latent membrane protein (LMP-1) and nuclear protein 2 and 3C are effectors of phenotypic changes in B lymphocytes: EBNA-2 and LMP-1 cooperatively induce CD23. J. Virol. 64, 2309-2318.
Wong, C., Rougier-Chapman, E. M., Frederick, J. P., Datto, M. B., Liberati, N. T., Li, J. M., and Wang, X. F. (1999). Smad3-Smad4 and AP-1 complexes synergize in transcriptional activation of the c-Jun promoter by transforming growth factor beta. Mol. Cell. Biol. 19, 1821-1830.
Wotton, D., Lo, R. S., Lee, S., and Massague, J. (1999). A Smad transcriptional corepressor. Cell 97, 29-39.
Yalamanchili, R., Tong, X., Grossman, S., Johannsen, E., Mosialos, G., and Kieff, E. (1994). Genetic and biochemical evidence that EBNA 2 interaction with a 63-kDa cellular GTG-binding protein is essential for B lymphocyte growth transformation by EBV. Virology 204, 634-641.
Yates, J., Warren, N., Reisman, D., and Sugden, B. (1984). A cis acting element from the Epstein-Barr viral genome that permits stable replication of recomination plasmids in latenly infected cells. Proc. Natl. Acad. Sci. USA 81, 3806-3810.
Young, L. S., Dawson, C. W., Clark, D., Rupani, H., Busson, P., Tursz, T., Johnson, A., and Rickinson, A. B. (1988). Epstein-Barr virus gene expression in nasopharyngeal carcinoma. J. Gen. Virol. 69, 1051-1065.
Zawel, L., Dai, J. L., Buckhaults, P., Zhou, S., Kinzler, K. W., Vogelstein, B., and Kern, S. E. (1998). Human Smad3 and Smad4 are sequence-specific transcription activators. Mol. Cell 1, 611-617.
Zhang, Q., Brooks, L., Busson, P., Wang, F., Charron, D., Kieff, E., Rickinson, A., and Tursz, T. (1994). Epstein-Barr virus (EBV) latent membrane protein 1 increases HLA class II expression in an EBV-negative B cell line. Eur. J. Immunol. 24, 1467-1470.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top