跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 07:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃郁展
研究生(外文):Yu-ChanHuang
論文名稱:壓電式針具系統設計與分析
論文名稱(外文):Design and Analysis of a Piezoelectric Vibration-Based Syringe System
指導教授:蔡明祺
指導教授(外文):Mi-Ching Tsai
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:75
中文關鍵詞:壓電材料針具注射力量組織特性量測
外文關鍵詞:piezoelectric materialsyringeinsertion forcetissue properties measurement
相關次數:
  • 被引用被引用:0
  • 點閱點閱:294
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
現今針被視為最小侵入性的治療及檢測方法,並應用於許多醫療過程,然而因針本身結構之特性,難免會產生病患之不適感以及醫療意外,為減少此類現象的產生,本研究發展一壓電式針具應用於醫療過程,利用壓電元件機電轉換特性,使針具擁有致動及感測兩方面之功能。在致動方面,於穿刺組織時加入超音波振動,實際測試結果發現可降低約36%的穿刺力量;而於感測方面,於穿刺組織時可藉由量測針具系統電氣阻抗,求得組織等效機械特性,實驗結果顯示此方法可明顯區別不同的組織。藉著穿刺力量的減少,以及量測組織之資訊,可簡化複雜的醫療過程並提升成功率,同時達到減輕病患痛楚以及降低醫療風險的效果。
Many modern medical diagnoses and therapies involve percutaneous intervention, which is perhaps the most minimally invasive medical procedure. However, some medical accidents due to the needle structural characteristics will threaten patients’ security and induce pain. To avoid this, this research aimed to develop a piezoelectric vibration-based syringe system for medical applications. Because of the electromechanical interaction of the piezoelectric element, this system possesses the functions of the actuator and the sensor. When it acts as an actuator, the reduction of the insertion force about 36% can be found when adding high frequency vibration to the needle during the insertion. On the other side, by measuring the input electrical impedance of the system, the mechanical impedance of tissues can be detected indirectly. The experimental results demonstrated that this method is able to distinguish various tissues obviously. By minimizing the insertion force and obtaining the tissues information, it is possible to simplify several medical procedures, enhance the surgery success rates, ease patients’ pain and reduce medical risks.
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 4
1.2.1 穿刺過程力學模型 5
1.2.2 降低穿刺力量 7
1.2.3 量測組織特性 10
1.2.4 組織模型 10
1.3 本文架構 16
第二章 壓電式針具設計與分析 18
2.1 壓電材料 18
2.2 有限元素法 20
2.3 壓電式針具設計 21
2.3.1 藍杰文換能器 21
2.3.2 壓電式針具結構與設計流程 22
2.3.3 壓電式針具ANSYS有限元素法模擬結果 27
2.3.4 壓電式針具特性驗證 29
第三章 壓電式針具量測組織特性方法 34
3.1 壓電式針具數學模型 34
3.1.1 壓電式針具數學模型推導 34
3.1.2 壓電式針具數學模型參數建立 39
3.2 雙端網路 41
3.3 量測組織模擬與分析 43
第四章 實驗結果與討論 49
4.1 實驗設備 49
4.2 穿刺力量實驗 52
4.3 壓電式針具模型建立實驗 57
4.4 壓電式針具模型驗證 60
4.5 組織特性量測實驗 62
第五章 結論與未來建議 70
參考文獻 72
[1]三軍總醫院-達文西手術系統介紹http://www.tsgh.ndmctsgh.edu.tw/
[2]WIKIPEDIA http://en.wikipedia.org
[3]高雄榮總放射線部 http://www.vghks.gov.tw/rd/intro.html
[4]K. R. Brandı, W. Charboneau, D. H. Stephens, T. J. Welch, and J. R. Goeliner, “CT- and US-guided Biopsy of the Pancreas, Radiology 187 (1993) 99-104.
[5]H. Rhim, and G. D. Dodd III, “Radiofrequency Thermal Ablation of Liver Tumors, Journal of Clinical Ultrasound, 27 (1999) 221-229.
[6]Society of Interventional Radiology http://www.sirweb.org/
[7]T. J. Lee, Partial Nephrectomy using an Electromagnetic Thermal Surgery System in a Porcine Model, in: 2011 Annual Symposium on Biomedical Engineering and Technology, Taiwan, August, 2011.
[8]N. Abolhassani, R. Patel, and M. Moallem, “Needle Insertion into Soft Tissue: A survey, Medical Engineering & Physics 29 (2007) 413–431.
[9]C. Simone and A. M. Okamura, Modeling of Needle Insertion Forces for Robot-Assisted Percutaneous Therapy, in: Proceedings of the 2002 IEEE International Conference on Robotics & Automation, Washington DC, May, 2002.
[10]A. M. Okamura, C. Simone, and M. D. O’Leary, “Force Modeling for Needle Insertion into Soft Tissue, IEEE Transactions on Biomedical Engineering 51 (2004) 1707-1716.
[11]H. Kataoka, T. Washio, K. Chinzei, K. Mizuhara, C. Simone, and A. M. Okamura, Measurement of the Tip and Friction Force Acting on a Needle during Penetration, in: Medical Image Computing and Computer-Assisted Intervention 2002, Tokyo, September, 2002.
[12]J. R. Crouch, C. M. Schneider, J. Wainer, and A. M. Okamura, A Velocity-Dependent Model for Needle Insertion in Soft Tissue, in: Medical Image Computing and Computer-Assisted Intervention 2005, California, October, 2005.
[13]T. K. Podder, D. P. Clark, D. Fuller, J. Sherman, W. S. Ng, L. Liao, D. J. Rubens, J. G. Strang, E. M. Messing, Y. D. Zhang, and Y. Yu, Effects of Velocity Modulation during Surgical Needle Insertion, in: Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, September, 2005.
[14]M. R. Prausnitz, “Microneedles for Transdermal Drug Delivery, Advanced Drug Delivery Reviews 56 (2004) 581– 587.
[15]H. Izumi, M. Suzuki, S. Aoyagi, T. Kanzaki, “Realistic Imitation of Mosquito’s Proboscis: Electrochemically Etched Sharp and Jagged Needles and Their Cooperative Inserting Motion, Sensors and Actuators A: Physical 165 (2011) 115–123.
[16]M. Yang and J. D. Zahn, “Microneedle Insertion Force Reduction using Vibratory Actuation, Biomedical Microdevices 6 (2004) 177-182.
[17]V.I. Babitsky, V.K. Astashev, and A. Meadows, “Vibration Excitation and Energy Transfer during Ultrasonically Assisted Drilling, Journal of Sound and Vibration 308 (2007) 805–814.
[18]N. Tanaka, M. Higashimori, and M. Kaneko, Active Sensing for Viscoelastic Tissue with Coupling Effect, in: 30th Annual International IEEE EMBS Conference Vancouver, British Columbia, Canada, August, 2008.
[19]D. Trebbels, F. Fellhauer, M. Jugl, G. Haimerl, M. Min, and R. Zengerle, “Online Tissue Discrimination for Transcutaneous Needle Guidance Applications using Broadband Impedance Spectroscopy, IEEE Transactions On Biomedical Engineering, 59 (2012) 494-503.
[20]S. F. Ling, and Y. Xie, “Detecting Mechanical Impedance of Structures Using the Sensing Capability of a Piezoceramic Inertial Actuator, Sensors and Actuators A: Physical 93 (2001) 243–249.
[21]S. F. Ling, X. Hou, and Y. Xie, “Decoupling Loading Effect in Simultaneous Sensing and Actuating for Dynamic Measurement, Sensors and Actuators A: Physical 120 (2005) 257–265.
[22]吳朗,電子陶瓷—壓電,全欣資訊圖書,1994。
[23]http://www.aurelienr.com/electronique/piezo/piezo.pdf
[24]H. Allik and J. R. Hughes, “Finite Element for Piezoelectric Vibration, International Journal Numerical Methods of Engineering, 2 (1970) 151-157.
[25]ANSYS Multiphysics 9.0 version, User manual, ANSYS Inc., 2004.
[26]T. B. Thoe, D. K. Aspinwall, and M. L. H. Wise, “Review on Ultrasonic Machining, International Journal of Machine Tools and Manufacture, 38 (1998) 239-255.
[27]T. Shigematsu and M. K. Kurosawa, “Friction Drive of an SAW Motor. Part I: Measurements, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 55 (2008) 2005-2015.
[28]G. Hayward, “A Systems Feedback Representation of Piezoelectric Transducer Operational Impedance, Ultrasonics 22 (1984) 153–162.
[29]S. H. Wang and M. C. Tsai, “Dynamic Modeling of Thickness-Mode Piezoelectric Transducer using the Block Diagram Approach, Ultrasonics 51 (2011) 617–624.
[30]J. Feenstra, J. Granstrom, and H. Sodano, “Energy Harvesting through a Backpack Employing a Mechanically Amplified Piezoelectric Stack, Mechanical Systems and Signal Processing 22 (2008) 721–734.
[31]F. Xing, B. Dong, and Z. Li, “Impedance Spectroscopic Studies of Cement-Based Piezoelectric Ceramic Composites, Composites Science and Technology 68 (2008) 2456–2460.
[32]K. Ishii, N. Akimoto, S. Tashirio and H. Igarashi, “Jump Phenomena of Current in Piezoelectric-Ceramic Vibrators under High Power Conditions, Journal of the European Ceramic Society 19 (1999) 1157–1160.
[33]S. Grimnes and O. G. Martinsen, Bioimpedance and Bioelectricity Basics, Oxford, UK: Academic Press, 2000.
[34]T. Kawahara, C. Toya, N. Tanaka, M. Kaneko, Y. Miyata, M. Okajima and T. Asahara, Non-Contact Impedance Imager with Phase Differentiator, in: Biomedical Robotics and Biomechatronics 2006, Italy, February, 2006.
[35]N. Tanaka, M. Higashimori and M. Kaneko, Non-Contact Stiffness Sensing with Deformation Dependent Force Calibration, in: 2011 IEEE International Conference on Robotics and Automation, China, May, 2011.
[36]N. Tanaka, M. Higashimori, M. Kaneko and I. Kao, “Noncontact Active Sensing for Viscoelastic Parameters of Tissue With Coupling Effect, IEEE Transactions on Biomedical Engineering 58 (2011) 509–520.
[37]N. Tanaka, R. Uchida, M. Higashimori, K. Tadakuma and M. Kaneko, Point-type Non-Contact Stiffness Sensing of Soft Tissue with Coupling Effect, in: 32nd Annual International Conference of the IEEE EMBS, Argentina, August, 2010.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top