跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/11 06:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:薛博謙
研究生(外文):Bor-chian Shian
論文名稱:以尾部指數建構投資組合之績效評估
論文名稱(外文):Performance Evaluation in Constructing the Investment Portfolio Based on Tail Index
指導教授:周建新周建新引用關係
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:財務管理所
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:48
中文關鍵詞:極值理論尾部指數高斯-牛頓法
外文關鍵詞:extreme value theory、tail index、Gauss-Newton
相關次數:
  • 被引用被引用:0
  • 點閱點閱:239
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
國內已有許多學者以偏態係數或常態檢定,來驗證金融資產之報酬分配是否為常態分配。極值理論主要是用來探討尾部分配的型態,藉此了解金融資產極值分配的型態和極端行為,近年來在財務領域上之應用,十分廣泛。本文旨在利用極值理論以驗證國內台股指數是否為厚尾分配(Fat-Tailed Distributions);亦即本文以高斯-牛頓法(Gauss-Newton Method)求算非線性迴歸模型中,所需估計極值理論之三種參數,並且檢定左右尾部指數是否符合常態或厚尾分配;為了克服樣本可能過少的問題,本文採取1996年至2006年共11年之台股指數日報酬率作為樣本,以克服樣本數不足將會降低極值分配的近似效果與模型中各種參數估計的精確度之問題。此外本文利用估計所得之尾部指數來建構投資組合,並與大盤之投資績效作一比較。實證結果發現利用極值理論所估算出之尾部指數,指出國內股價指數為非常態分配,其符合厚尾的Frèchet分配。此外利用兩種尾部指數估計法所建構之投資組合績效,均能擊敗股價指數。
The assumption that financial asset’s return follows the non-normal distribution is confirmed by many studies. However, there is no direct evidence pointing to a (Fat-Tailed Distributions) in Taiwan market index. In this study, the extreme value theory is employed to calculate the tail index of Taiwan weighted stock index. The left and right tail indices were examined to determine the distribution type and then to check whether they follow normal or Frèchet distribution. Additionally, Gauss-Newton method is used to obtain the three parameters required in estimating the extreme value theory in a non-linear regression. It is known that a low sample number would cause a decrease in the reliability of extreme distribution as well as a decrease in the precision of the estimation of parameters. To overcome this problem, a total of eleven years (1996-2006) of data were analyzed. Finally, we examine the issue whether the performance for investment portfolio based on tail indices has better performance than the market index.
The empirical results indicate that both extreme value theories (BMM and POT) have confirmed the Taiwan market index has a non-normal distribution. Additional tests also indicate that it follows the Frèchet distribution. It also shows that the investment portfolios based on either type of tail index can provide better investment performance than the market index.
目錄

摘要 i
Abstract ii
誌謝 iii
表目錄 v
圖目錄 vi
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 4
第三節 研究架構 4
第二章 文獻回顧與探討 6
第一節 風險值模型介紹 6
第二節 極值理論相關文獻 7
第三節 尾部指數介紹 12
第四節 傳統投資組合 15
第五節 考慮風險值後之投資組合 15
第三章 研究方法與模型 17
第一節 極值理論模型 17
第二節 參數求解 24
第三節 檢定估計法 26
第四節 建構投資組合 28
第四章 實證結果分析 30
第一節 資料描述與基本統計分析 30
第二節 尾部指數估計與檢定 34
第三節 建構投資組合 37
第五章 結論與建議 42
參考文獻(References) 44
附錄 高斯-牛頓法 49
參考文獻(References)
1.王君文(2001),“極端值理論風險值評估模式之探討”,中正大學財務金融研究所,碩士論文。
2.林宗慶(2005),“極值理論模型之交叉驗證”,逢甲大學統計與精算研究所,碩士論文。
3.林孟迪(2000),“極端風險值理論在新興市場的運用”,淡江大學財務金融研究所,碩士論文。
4.王學斌(2002),“保險損失在混合分配下之參數估計及再保保費之計算”,逢甲大學統計與精算研究所,碩士論文。
5.吳壽山、周賓凰(1996),“衡量漲跌幅限制對股票報酬與風險之影響”,證券市場發展季刊,8(1),頁1-29
6.周建新、于鴻福、廖盈秋(2004),“極值理論與台股指數期貨合理保證金之估計,交大管理學報,第二十四卷,第一期,23-53頁。
7.康倫年(1999),“Value at Risk 與無母數方法”,銘傳大學財務金融所,碩士論文。
8.陳柏翰(2002),“價格極端波動下之謹慎保證金政策”,中央大學財務金融研究所,碩士論文。
9.陳佩鈴(2002),“匯率條件風險值之估計與比較”,中原大學國際貿易研究所,碩士論文。
10.陳俊宏(2002),“非齊質變異下尾端風險的衡量”,國立政治大學國際貿易學系,碩士論文。
11.陳建銘(2002),“厚尾分配、極值理論與最適資產配置”,東吳大學經濟學系,碩士論文。
12.劉淑鶯(2003),“極端值理論於風險管理之探討-匯率之實證研究”, 銘傳大學財務金融所,碩士論文。
13.曹懋鍇 (2002),“值端值理論於期貨保證金設定之應用”, 銘傳大學財務金融所,碩士論文。
14.謝秀虹(2002),“台灣期貨市場保證金水準設定之研究”,高雄第一科技大學財務管理研究所,碩士論文。
15.謝金星(2004),“大宗穀物期貨投資組合風險值研究-結合GARCH與極端值理論模型之應用”, 屏東科技大學農企業管理研究所,碩士論文。
16.魏輝娥(2003),“最適尾端參數估計之探討:台灣股票報酬風險值之應用” 中正大學國際經濟研究所,碩士論文
17.Balkema, A. and de Haan, L. (1974), “Residual life time at great age,” Annals of Probability 2, pp. 792-804.
18.Bensalah, Y. (2002), “Asset Allocation Using Extreme Value Theory,” A Review Bank of Canada Working Paper No. 2002–2
19.Black and Scholes (1973), “The Pricing of Options and Corporate Liabilities.” Journal of Political Economy, 81, 637-654.
20.Brooks, Clare and Dalle (2005), “A Comparison of Extreme Value Theory Approaches for Determining Value at Risk,” Journal of Empirical Finance, 12, pp. 339-352.
21.Broussard, J. P. and Booth, G. G., (1998), “The Behavior of the Extreme Values in Germany’s Stock Index Futures: An Application to Intradaily Margin Setting,” European Journal of Operational Research, 104, pp. 393-402.
22.Burridge, L. C. (2000), “Value at Risk: Applying the Extreme Value Approach to Asian Markets in the Recent Financial Turmio,” Pacific Basin Finance Journal, 8, pp. 249-275.
23.Cotter, J. (2001), “Margin Exceedence for European Stock Index Futures Using Extreme Value Theory,” Journal of Banking and Finance, 25, 1475–502.
24.Cotter, J (2004), “Downside Risk for European Equity Markets,” Applied Financial Economics, 2004, 14, 707–716
25.Cotter, J, Kevin Dowd (2006), “Extreme Spectral Risk Measures: An Application to Futures Clearinghouse Margin Requirements,” Journal of Banking & Finance 30 3469–3485
26.Danielsson , Jansen and DeVries (1996), “The Method of Moment Ratio Estimator for the Tail Shape Distribution,” Communication in Statistics (A) – Theory and Methods 25 (4), 711-720.
27.Danielsson and DeVries (1997), “Tail Index and Quantile Estimation with Very High Frequency Data,” Journal of Empirical Finance, 4, 241-257.
28.Duffie, D. and J. Pan (1997), “An Overview of Value at Risk,” The Journal of Derivatives, 7, pp. 7-49.
29.Dekkers, A.L.M., De Haan, L. (1989), “On the Estimation of the Extreme Value Index and Large Quantile Estimation.” The Annals of Statistics 17, 1795–1832.
30.Gencay, R. and Selcuk, F. (2004), “Extreme Value Theory and Value-at-Risk:Relative Performance in Emerging Markets,” International Journal of Forecasting, 20, pp. 287-303.
31.Gnedenko, B.V. (1943), “Sur la distribution limite du terme maximum d_une se’rie ale’atoire.” Annals of Mathematics, 44, 423–453.
32.Goldie, C. M. and R. L. Smith (1987), “Slow Variation with Remainder: Theory and Applications,” Quarterly Journal of Mathematics, 38, 45-71.
33.Gumbel, E.J (1958), “Statistics of Extremes,” Columbia University Press, New York.
34.Hall, D. A., and Kofman P. (2001), “Limits to Linear Price Behavior: Futures Prices Regulated by Limits”, The Journal of Futures Markets, 21, pp. 463-488.
35.Hendricks,D (1996), “ Evalution of Value-at-Risk Models Using Historical Data,” Economic Policy Review, Federal Reserve Bank of New York,2,April,39-69.
36.Hill, B.M., (1975), “A Simple General Approach to Inference about the Tail of a Distribution,” Annals of Statistics 46, 1163–1173.
37.Huisman, R., Koedijk, K., Kool (2001), “Tail Index Estimates in Small Samples.” Journal of Business and Economic Statistics 19, 208–215.
38.Huisman, R., Koedijk, K., R.A.J. Pownall (1998), “VaR-x: Fat Tails in Financial Risk Management,” Journal of Risk, 1(1), 47-61.
39.Jorion, P. (2000), “Value at Risk, New York”:McGraw-Hill.
40.Longin, F.(1996), “The Asymptotic Distribution of Extreme Stock Market Returns. ”Journal of Business 63,383–408.
41.Longin, F (2000), “From Value at Risk to Stress Testing: the Extreme value Approach,” Journal of Baking and Finance, 24, 1097-1130.
42.Longin, F.(2001), “Extreme Correlation of International Equity Markets.” Journal of Finance 56, 651–678.
43.Longin, F (2005), “The Choice of the Distribution of Asset Returns: How Extreme Value Theory Can Help?”Journal of Banking & Finance 29 1017–1035
44.Mason, D. M. (1982), “Laws of Large Numbers for Sums of Extreme Values,” Annals of Probability, 10, 754-764.
45.Markowitz, H. (1952), “Portfolio selection.” Journal of Finance 7, 77–91.
46.McNeil, A.J. (2000), “Extreme Value Theory for Risk Managers. ”Extremes and Integrated Risk Management, Risk Book, pp. 3-18..
47.Merton, R.C (1973), “Theory of Rational Option Pricing,” Bell Journal of Economics and Management Science, 4, 141-183.
48.Morgan, J.P. (1996), “RiskMetricsTM, ” New York:Technical Document, Fourth Edition
49.Pickands (1975), “Statistical Inference Using Extreme Order Statistics. ”Annals of Statistics 3, 119–131.
50.Ramazan Gencay, Faruk Selc_uk (2004), “Extreme Value Theory and Value-at-Risk: Relative Performance in Emerging Markets ,”International Journal of Forecasting 20 287– 303
51.Resnick, S. and Stărică, C. (1998), “Tail Index Estimation for Dependent Data, ” Annals of Applied Probability 8 (4), 1156-1183.
52.Sharpe, W. (1964), “Capital Asset prices: A Theory of Market Equilibrium under Conditions of Risk,” Journal of Finance 19, 425-442.
53.Telser, L. G., (1981), “Margins and Futures Contracts,” The Journal of Futures Markets, 1, pp. 127-152
54. Warshawsky, M. J. (1989), “The Adequacy and Consistency of Margin Requirements: The Cash, Futures, and Options Segments of the Equity Markets,” Review of Futures Markets, 8, 420-437.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top