|
The construction of a proper network architecture is always a tough challenge while we apply neural networks. In this thesis, we propose a construction method inspired by biological nervous systems, which is developed based on the construction rules and information encoded in genes. According to this idea, we design the construction rules for neural networks and encode the rules. Then, evolve the optimal rules by using genetic algorithms.The spirit of rule construction is mainly from the competition rules for resource in the nature. Based on this hypothesis, neurons in our model need resources to survive, and input data are considered as the resources. After investigating the interaction between the neurons and the resources, we organize the general construction rules for neural networks.In this thesis, we prove the usefulness of the proposed model by constructing two different neural network models, RCE (Reduced Coulomb Energy) and Kohonen*s SOM(Self-Organizing Map),with the application of IRIS training data, and hand-written digit recognition. Simulation results show that the neural network architectures can be efficiently constructed by the proposed model.
|