|
[1] K. J. Astr‥om and P. Eykhoff, “System identification - a survey,” Automatica, vol. 7, no. 2 pp.123-162, 1971. [2] P. C. Young, “Parameter identification of continuous-time models,” Automatica, vol. 17, no. 1 pp.23-39, 1981. [3] H. Unbehauen and G. P. Rao “Continuous-time approaches to system identification - a survey,” Automatica, vol. 26, no. 1 pp.23-35, 1990. [4] H. Unbehauen and G. P. Rao “Identification of continuous-time systems - a tutorial,” Proc. 11th IFAC Symposium on Identification (SYSID’97), Fukuoka, Japan, pp.1023- 1049, July 1997. [5] H. Unbehauen and G. P. Rao “A review of identification in continuous systems,” IFAC Annu. Rev. Control, vol. 22 pp.145-171, 1998. [6] H. Unbehauen and G. P. Rao “Identification of continuous systems - a survey,” Syst. Anal. Model. Simul., vol. 33 pp.99-155, 1998. [7] D. C. Saha and G. P. Rao, Identification of Continuous Dynamical Systems - The Poisson Moment Functional (PMF) approach, LNCIS, vol. 56, Springer Verlag, Berlin, 1983. [8] H. Unbehauen and G. P. Rao Identification of Continuous systems, North Holland, Amsterdam 1987. [9] N. K. Sinha and G. P. Rao Identification of Continuous systems-methodology and computer implementation, Kluwer, Doredrecht 1991. [10] S. Sagara , Z. J. Yang, and K. Wada, “Identification of Continuous systems from noisy sampled input-output data,” Proc. 9th IFAC/IFORS Symp. Identification Syt. Parameter Estimation, Budapest, Hungary, pp.603-608, 1991. [11] Z. Y. Zhao, S. Sagara ,and K. Kumamaru “On-line identification of time delay and system parameters of continuous system based on discrete-time measurements,” Proc. 9th IFAC/IFORS Symp. Identification Syt. Parameter Estimation, Budapest, Hungary, pp.721-726, 1991. [12] S. Mukhopadhyay, A. Patra, and G. P. Rao “A new class of discrete-time models for continuous-time systems,” Int. J. Control, vol. 55, no. 5, pp. 1161-1187, 1992. [13] T. S‥odestrom, H. Fan, B. Carlson, and S. Bigi “Least squares parameter estimation of continuous-time ARX models from discrete-time data,” IEEE Trans. Autom. Control, vol. 42, no. 5 pp. 659-673, 1997. [14] K. R. Godfrey “Correlation method,” Automatica, vol. 16, pp. 527-534, 1980. [15] P. E. Wellstead “Nonparametric methods of system identification,” Automatica, vol. 17, 1981. [16] I. D. Landau Adaptive Control (The Model Reference Approach) Marcel Dekker, New York. [17] L. Ljung, System Identification, Theory for The User, Prentice-Hall, 1987. [18] T. S‥oderstr‥om and P. Stoica, System Identification, Prentice Hall, 1989. [19] L. Y. Wang and G. G. Yin, “Closed-loop persistent identification of linear systems with unmodeled dynamics and stochastic disturbances,” Automatica, vol. 38, pp.1463-1474, 2002. [20] G. Tao, Adaptive Control Design and Analysis, John Wiley & Sons, Chapter 3.7 and 3.8, 2003. [21] F. M. Lee, I. K. Fong, and L. C. Fu, “ Stable on-line parameter identification algorithms for systems with non-parametric uncertainties and disturbances,” International Journal of Control, vol. 65, no. 2, pp. 329-345, 1996. [22] E. Walter and H. Piet-Lahanier, “ Estimation of parameter bounds from boundederror data: a survey,” Mathematics and Computers in Simulation, vol. 32, pp. 449- 468, 1990. [23] M. Milanese and A. Vicino, “Optimal estimation theory for dynamic systems with set membership uncertainty: An overview,” Automatica, vol. 27, pp. 997-1009, 1991. [24] E. W. Bai, Y. Ye, and R. Tempo, “Bounded error parameter estimation: a sequential analytic center approach,” IEEE Transactions on Automatic Control, vol. 44, no. 6, pp. 1107-1117, June 1999. [25] S. S. Wilson and C. L. Carnal, “System identification with disturbances,” Proceedings of the 26th Southeastern Symposium on System Theory, pp. 502-506, 1994. [26] K. J. Astrom and B. Wittenmarkm, Adaptive Control, Addison Wesley, Chapter 3, 1989. [27] P. O’Neil, Advanced Engineering Mathematics, Thomson, Brooks/Cole, Chapter 13, 2003. [28] P. Eykhoff, System Identification, Wieley, New York, 1974. [29] Z. Y. Zhao, S. Sagara, and M. Tomizuka, “A new bias compensating LS method for continuous system identification in the presence of coloured noise,” Int. J. Control, vol. 56, no. 6, pp. 1441-1452, 1992. [30] Z. J. Yang, S. Sagara, and K. Wada, “Identification of continuous time systems from sampled input-output data using biased eliminating techniques,” Control Theory Adv. Tech, vol. 9, no. 1, pp. 53-75, 1993. [31] S. Sastry and M. Bodson, Adaptive Control: Stability, Convergence, and Robustness, Prentice-Hall, 1989-1994. [32] Enrique A. Gonz’alez-Velasco Fourier Analysis and Boundary Value Problems, Elsevier, 1995. [33] R. Lozano, D. Dimoqianopoulos, and R. Mahony, “Identification of linear timevarying systems using a modified least-squares algorithm,” Automatica, vol. 36, pp. 1009-1015, 2000. [34] M. Salgado, G. C. Goodwin, and R. Middleton, “Modified least squares algorithm incorporating exponential resetting and forgetting,” International Journal of Control, vol. 47 no. 2, pp. 477-491, 1988. [35] S. Haykin, Adaptive Filter Theory (4th edition) N.J. , Prentice Hall, 2002. [36] Maciej Nied’zwiecki, Identification of Time-varying Processes, New York, Wiley, 2000. [37] R. E. Lawrence and H. Kaufman, “The Kalman Filter for the Equalization of a Digital Communications Channel,” IEEE Transactions on Communication Technology, vol. COM-19, pp. 1137-1141, 1971. [38] S. Ungarala and T. B. Co, “Time-varying system identification using modulating functions and spline models with application to bio-processes,” Computers and Chemical Engineering, vol. 24 pp. 2739-2753, 2000. [39] M. Nied’zwiecki, “Recursive functional series modeling estimators for identification of time-varying plants : more bad news than good ?” IEEE Trans. Automat. Control, vol. 35, pp. 610-616, 1990. [40] M. Nied’zwiecki and T. Klaput, “Fast Recursive Basis Function Estimators for Identification of Time-Varying Processes,” IEEE Transactions on signal processing, vol. 50, pp. 1925-1934, 2002. [41] G. Davidov, A. Shavit, and Y. Korean, “Estimation of dynamical-varying parameters by the internal model principle,” IEEE Trans. Automat. Control, vol. 37, pp. 498- 503, 1992 [42] B. A Francis and W.M. Wonham, “The internal model principle of control theory,” Automatica, vol. 12, pp. 457-465, 1976. [43] M. K. Tsatsanis and G. B. Giannakis, “Modeling and equalization of rapidly fading channels,” Int. J. Adaptive Contr. Signal Process., vol. 10, pp. 159–176, 1996. [44] K. H. Chon, H. Zhao, R. Zou, and K. Ju, “Multiple time-varying dynamic analysis using multiple sets of basis functions,” IEEE Trans. Biomed. Eng., vol. 52, no. 5, pp. 956–960, May 2005. [45] M. Abu-Naser and G. A. Williamson, “Convergence properties of adaptive estimators of time-varying linear systems using basis functions,” Proc. 12th IEEE Digital Signal Processing Workshop, pp. 336-341, 2006. [46] M. Abu-Naser and G. A. Williamson, “Convergence of adaptive estimators of timevarying linear systems using basis functions: continuous-time results,” Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE International Conference on, vol. 3 pp. III-1361-III-1364 April 2007. [47] B. D. O. Anderson and J. B. Moore, Optimal Control: Linear Quadratic Methods, Prentice Hall, 1990. [48] H. K. Khalil, Nonlinear Systems, Prentice Hall, 2002. [49] K. Zhou and J. C. Doyle, Essentials of Robust Control, Prentice Hall, 1998. [50] S. Skogestad and I. Postlethwaite, Multivariable feedback control: analysis and design, John Wiley, 2005.
|