跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/27 09:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳彥臻
研究生(外文):Yen-Jen Chen
論文名稱:I. 鋁金屬搭配酮亞胺配位基之催化劑設計與合成以及應用於環己內酯開環聚合反應II. 銅金屬搭配碳烯配位基之催化劑設計與合成並應用於碳硫耦合反應及點擊化學
論文名稱(外文):I. Synthesis of Aluminum Complexes with Ketimine Ligands, and Their Application in the Ring-Opening Polymerization of ε-Caprolactone.II. Synthesis of Copper Complexes with NHC Carbene Ligands, and Their Application in the C-S Coupling and Click reaction.
指導教授:陳喧應
指導教授(外文):Hsuan-Ying Chen
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:醫藥暨應用化學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:147
中文關鍵詞:環己內酯點擊化學碳硫耦合開環聚合
外文關鍵詞:AlCopperclick reactioncouplingROP
相關次數:
  • 被引用被引用:0
  • 點閱點閱:185
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
I. 本論文合成一系列鋁金屬搭配酮亞胺配位基之錯合物,並使用其催化環己內酯之開環聚合反應。透過螯合、立障及電子效應探討配位基對於催化反應的影響。經實驗證明,立障大及拉電子基團之配位基具良好催化活性,且透過文獻13f得知立障大之配位基不容易與鋁金屬螯合形成二聚體。另一方面,拉電子基有利於增加鋁金屬的路易斯酸性進而提高其與單體之羰基反應活性;螯合反應則容易降低鋁金屬的路易斯酸性且配位基也易與單體競爭,因此降低了催化活性。此外,透過動力學探討一系列鋁金屬錯合物之誘導期,研究發現具螯合性、立障小或推電子基團利於增加鋁金屬上甲基的鹼度並加速與苯甲醇置換使誘導期縮短。

II. 本論文合成一系列銅金屬搭配碳烯配位基之錯合物,並使用其催化碳-硫耦合反應和點擊化學。經實驗證明,不同陰離子之性質及立障效應對於點擊化學反應有影響,但對於催化碳-硫耦合反應並無明顯效果。此外,較不具共振性質之催化劑(帶有單鍵之配位基)的單硫產物明顯較具共振性質者(帶有雙鍵之配位基)高。而不具立障取代者催化點擊化學活性較佳,另一方面,文獻也證明配位基具有BF4- 或是 PF6- 離子會與銅發生金屬團簇現象,使立體空間變小,起始物不易配位上銅。最後,我們對於點擊化學做了動力學探討,發現其為一級反應並與文獻之反應機制相符。

I. A series of Al complexes bearing ketimine ligands was synthesized and their application for the ring-opening polymerization of ??-caprolactone was studies. The chelating, steric and electronic effects of the ligands had a considerable influence on the resulting catalysis. Complexes with steric hindrance or electron-withdrawing group in the ligands demonstrated the great catalytic activity because steric hindrance in the ligands avoided the dimerization of Al complexes according to the references. And electron-withdrawing group increased the lewis acidity of Al, enhancing the activity of carbonyl group of monomers. The chelating effect decreased the reactivity of ring-opening polymerization, due to the decrease of lewis acidity of Al and the increasing competition with monomers. In addition, kinetic study showed that the induction period was shorter in Al complexes with less hindering, chelating, or electron-donating group, due to the increase of the basicity of methyl group, enhancing the interchange with benzyl alcohol.

II. A series of Cu complexes bearing NHC carbene ligands was synthesized and their applications for the C-S coupling and click reaction were studies. The steric effect of the ligands and anionic effects had a considerable influence on the resulting catalysis for the click reaction, but a slight influence for the C-S coupling reaction. In addition, the complexes with less aromaticity (single bond on the ligand framework) in the ligands producted more diaryl sulfide compared with the complexes with more aromaticity (double bond on the ligand framework) in the ligands. Complexes with less steric hindrance in the ligands demonstrated the great catalytic activity for the click reactions. And the literature reported that ligands with BF4- or PF6- counterion reacted with Cu would form the cluster structure. They showed the crowded environment for the Cu center and made the substrates not easy to coordinate Cu. Kinetic study of the click reaction showed that the orders of catalyst, ethynylbenzene, and azidomethylbenzene were 1 and fits in the mechanism reported from the literature.

鋁金屬搭配酮亞胺配位基之催化劑設計與合成以及應用於環己內酯開環聚合反應
第一章 緒論……………………………………………………………1
一、 前言……………………………………………………………1
二、 環保材料的興起………………………………………………2
三、 聚合物的生產…………………………………………………3
四、 催化劑的研發…………………………………………………4
五、 鋁及輔助配位基的演進及效果………………………………5
六、 研究目的……………………………………………………..12
第二章 實驗設計與合成……………………………………………..13
一、 儀器……………………………………………………………………………………………13
二、 溶劑與藥品………………………………………………………………………………15
三、 配位基之合成……………………………………………………………………………17
四、 錯合物之合成………………………………………………..22
五、 晶體結構的比較……………………………………………..32
六、 開環聚合催化反應…………………………………………..34
第三章 實驗結果與討論……………………………………………..35
一、 鋁金屬錯合物催化環己內酯之開環聚合反應結果………..35
二、 動力學通式推導……………………………………………..37
三、 動力學實驗…………………………………………………..38
四、 催化劑控制分子量能力的探討……………………………..40
五、 各催化劑kobs及induction period之結果討論………………41

具碳烯配位基銅金屬錯合物之設計與合成及
催化耦合反應之應用
第四章 結論…………………………………………………………..45
第一章 緒論…………………………………………………………..46
一、 前言…………………………………………………………..46
二、 研究目的……………………………………………………..51
第二章 實驗設計與合成……………………………………………..53
一、 儀器……………………………………………......................53
二、 溶劑與藥品…………………………………………………..53
三、 配位基之合成………………………………………………..55
四、 錯合物之合成………………………………………………..58
五、 晶體結構的比較……………………………………………..63
第三章 實驗結果與討論……………………………………………..65
一、 碳—硫耦合反應…………………………………………………………65
二、 催化碳—硫耦合反應結果…………………………………..66
三、 催化疊氮化合物與炔之耦合反應結果……………………..67
四、 催化疊氮化合物與炔之耦合反應動力學結果......................68
第四章 結論…………………………………………………………..71
參考文獻………………………………………………………………..72
附錄……………………………………………………………………….i

1(a)http://content.edu.tw/junior/life_tech/ks_dz/content/area3/015/index.htm; (b) Ohara, H., Ito, M., Sawa, S., 2003 Process for producing lactide and process for producing polylactic acid from fermented lactic acid employed as starting material. U.S. Patent 6 569 989 B2, U.S. Patent Office; (c) ELSEVIER PDL HANDBOOK SERIES - Polylactic Acid (PLA Biopolymer Technology and Applications) Lee Tin Sin, Abdul Razak Rahmat, Wan Aizan Wan Abdul Rahman 1-33; (d) http://www.grains.org.tw/Views/Content.aspx?ctId=26&cId=7; (e) Macromolecules 1990, 23, 1640-1646.

2. (a) Macromolecules 1995, 28, 3937-3939; (b) Dalton Trans. 2011, 40, 1396-1400; (c) Dalton Trans. 2013, 42, 2041-2051; (d) Organometallics 2012, 31, 4133-4141; (e) Organometallics 2004, 23, 2382-2388; (f) Organometallics 2012, 31, 4755-4762

3. (a) Nomura, N.; Aoyama, T.; Ishii, R.; Kondo, T. Macromol. 2005, 38, 5363; (b) Liu, J.; Iwasaa, N.; Nomura K. Dalton Trans. 2008, 3978–3988; (c) Zhang, C.; Wang, Z. X. J. Organomet. Chem. 2008, 693, 3151–3158; (d) Arbaoui, A.; Redshaw, C.; Hughes, D. L. Chem. Commun., 2008, 4717–4719; (e) Haddad, M.; Laghzaoui, M.; Welter, R.; Dagorne, S. Organometallics, 2009, 28, 2179–2187; (f) Yu, R. C.; Hung, C. H.; Huang, J. H.; Lee, H. Y.; Chen, J. T. Inorg. Chem.
73
2002, 41, 6450–6455; (g) Ma, W. A.; Wang, Z. X. Dalton Trans. 2011, 40, 1778–1786; (h) Gong, S.; Ma, H. Dalton Trans. 2008, 3345–3357.

4. (a) Bakewell, C.; Platel, R. H.; Cary, S. K.; Steven, M. H.,; Joshua, M. R.; Alex, C. L.; Andrew, J. P. W.; Nicholas, J. L.; Michael H.; Charlotte K. W. Organometallics 2012, 31, 4729−4736; (b) Hongzhi, D.; Aldrik H. V.; Pieter, J. D.; Zhiyuan, Z.; Xuesi, C.; Jan F. Macromolecules 2009, 42, 1058–1066; (c) Inge van der, M.; Erik, G.; Saskia, H.; Rafa?墈l S.; Cor, E.; Koning, A. H.; Rob, D. Macromolecules 2011, 44, 4301–4305; (d) Peng, K. F.; Chen C. T. Dalton Trans. 2009, 9800–9806; (e) Gao, A.; Mu, Y.; Zhang, J.; Yao, W. Eur. J. Inorg. Chem. 2009, 3613–3621; (f) Milani, B.; Claver, C. Dalton Trans. 2009, 9000–9009; (g) Zhang, W.; Wang, Y.; Sun, W. H.; Lin, W.; Redshaw, C. Dalton Trans. 2012, 41, 11587–11596.

5. (a) Chen, C. T.; Huang, C. A.; Huang, B. H. Macromolecules 2004, 37, 7968–7973; (b) Ikpo, N.; Barbon, S. M.; Drover, M. W.; Dawe, L. N.; Kerton, F. M. Organometallics 2012, 31, 8145−8158; (c) Schwarz, A. D.; Chu, Z.; Mountford, P. Organometallics 2010, 29, 1246–1260.

6. (a) Alkarekshi, W.; Armitage, A. P.; Boyron, O.; Davies, C. J.; Govere, M.; Gregory, A.; Singh, K.; Solan, G. A. Organometallics 2013, 32, 249−259; (b) Qian, F.; Liu, K.; Ma, H. Dalton Trans. 2010, 39, 8071–8083; (c) Gong, S.; Ma, H. Dalton Trans. 2008, 3345–3357; (d) Pang, X.; Du, H.; Chen, X.; Wang, X.; Jing, X. Chem. Eur. J. 2008, 14,
74
3126–3136; (e) Ma, W. A.; Wang, Z. X. Dalton Trans. 2011, 40, 1778–1786; (f) Sen, T. K.; Mukherjee, A.; Modak, A.; Ghorai, P. K.; Kratzert, D.; Granitzka, M.; Stalke, D.; Mandal, S. K. Chem. Eur. J. 2012, 18, 54–58; (g) Lamberti, M.; D’Auria, I.; Mazzeo, M.; Milione, S.; Bertolasi, V.; Pappalardo, D. Organometallics 2012, 31, 5551−5560; (h) Hormnirun, P.; Marshall, E. L.; Gibson, V. C.; White, A. J. P.; Williams, D. J. J. Am. Chem. Soc. 2004, 126, 2688; (i) A., B. L.; D., J.; N., S. Polymer Bulletin 2000, 44, 31–38; (j) Darensbourg, D. J.; Karroonnirun, O.; Wilson, S. J. Inorg. Chem. 2011, 50, 6775–6787; (k) Alcazar-Roman, L. M.; O’Keefe, B. J.; Hillmyer, M. A.; William, B. T. DaltonTrans. 2003, 3082–3087; (l) Du, H.; Velders, A. H.; Dijkstra, P. J.; Sun, J.; Zhong, Z.; Chen, X.; Feijen, J. Chem. Eur. J. 2009, 15, 9836–9845.

7. (a) Andrade, C. K. Z.; Barreto, A. S.; Silva, W. A. Arkivoc 2008, 12, 226-232; (b) Chen, H. Y.; Peng, Y. L.; Huang, T. H.; Sutar, Alekha K.; Lin, C. C.; Miller, S. A. J. Mol. Catal. A: Chem. 2011, 339, 61-71; (c) Hai-tao, A.; Lu, L.; Guang-yong X. Huaxue Shiji 2010, 32, 649-651; (d) Gong, S.; Ma, H. Dalton Trans. 2008, 3345-3357; (e) Potesil, T. J. Chromatogr. 1984, 312, 387; (f) Morgan; Drew J. Chem. Soc. 1921, 119, 614; (g) Vitanova, D. V.; Hampel, F.; Hultzsch, K. C. J. Organomet. Chem. 2005, 690, 5182-5197; (h) Scott, K. R.; Edafiogho, I. O.; Richardson, E. L.; Farrar, V. A.; Moore, J. A. J. Med. Chem. 1993, 36, 1947-1955; (i) Lee, D. H.; Park, S. E.; Cho, K.; Kim, Y.;
75
Athar, T.; Lee, I. M. Tetrahedron Lett. 2007, 48, 8281-8284; (j) Gulli, S.; Daran, J. C.; Poli, R. Eur. J. Inorg. Chem. 2011, 1666-1672.

8. (a) J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 957-966; (b) Macromolecules 2005, 38, 5363-5366; (c) Organometallics 2013, 32, 1694-1709.

9. (a) Liu, G.; Huth, J. R.; Edward, T. O.; Mendoza, R.; DeVries, P.; Leitza, S.; Reilly, E. B.; Okasinski, G. F.; Fesik, S. W.; von Geldern, T. W. J. Med. Chem. 2001, 44, 1202-1210; (b) Martino, G. D.; Edler, M. C.; Regina, G.L.; Coluccia, A.; Barbera, M. C.; Barrow, D.; Nicholson, R. I.; Chiosis, G.; Brancale, A.; Hamel, E.; Artico, M.; Silvestri, R. J. Med. Chem. 2006, 49, 947-954; (c) Lindley, J. Tetrahedron 1984, 40, 1433 ; Yamamoto, T.; Sekine, Y. / Can. J. Chem. 1984, 62, 1544 ; Hickman, R. J. S.; Christie, B. J. / Guy, R.W.; White, T. J. Aust. J. Chem. 1985, 38, 899 / Van Bierbeek, A.; Gingras, M. Tetrahedron Lett. 1998, 39, 6283-6286; (d) Migita, T.; Shimizu, T.; Asami, Y.; Shiobara, J.; Kato, Y.; Kosugi, M. Bull. Chem. Soc. Jpn. 1980, 53, 1385-1389 / Kosugi, M.; Shimizu, T.; Migita, T. Chem. Lett. 1978, 13-14; (e) Mispelaere-Canivet, C.; Spindler, J.-F.; Perrio, S.; Beslin, P. Tetrahedron 2005, 64, 5353-5259 / Itoh, T.; Mase, T. Org. Lett. 2004, 6, 4587-4590 / Murata, M.; Buchwald, S. L. Tetrahedron 2004, 60, 7397-7403 / Schopfer, U.; Schlapbach, A. Tetrahedron 2001, 57, 3069-3073 / Li, G. Y.; Zheng, G.; Noonan, A. F. J. Org. Chem. 2001,
76
66, 8677-8681 / Li, G. Y. Angew. Chem., Int. Ed. 2001, 40, 1513-1516 / Zheng, N.; McWilliams, J. C.; Fleitz, F. J.; Armstrong, J. D., III; Volante, R. P. J. Org. Chem. 1998, 63, 9606-9607; (f) Fernandez-Rodriguez, M. A.; Shen, Q.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 2180-2181.

10. (a) Percec, V.; Bae, J.-Y.; Hill, D. H. J. Org. Chem. 1995, 60, 6895-6903 / Zhang, Y.; Ngeow, K. N.; Ying, J. Y. Org. Lett. 2007, 9, 3495-3498 / Jammi, S.; Barua, P.; Rout, L.; Saha, P.; Punniyamurthy, T. Tetrahedron Lett. 2008, 49, 1484-1487; (b) Wu, J.-R.; Lin, C.-H.; Lee, C.-F. Chem. Commun. 2009, 4450-4452 / Correa, A.; Carril, M.; Bolm, C. Angew. Chem. Int. Ed. 2008, 47, 2880-2883 / Buchwald, S. L.; Bolm, C. Angew. Chem. Int. Ed. 2009, 48, 5586-5587; (c) Reddy, V. P.; Swapna, K.; Kumar, A. V.; Rao, K. R. J. Org. Chem. 2009, 74, 3189-3191; (d) Wong, Y.-C.; Jayanth, T. T.; Cheng, C.-H. Org. Lett. 2006, 8, 5613-5616.

11. (a) Chen, C.-K.; Chen, Y.-W.; Lin, C.-H.; Lin, H.-P.; Lee, C.-F. Chem. Commun. 2010, 46, 282-284; (b) Kao, H.-L.; Chen, C.-K.; Wang, Y.-J.; Lee, C.-F. Eur. J. Org. Chem. 2011, 1776-1781; (c) Yang, H.; Xi, C.; Miao, Z.; Chen, R. Eur. J. Org. Chem. 2011, 3353-3360; (d) Savarin, C.; Srogl, J.; Liebeskind, L. S. Org. Lett. 2002, 4, 4309-4312.

12. (a) Jin, Z.; Guo, S. X.; Gu, X. P.; Qiu, L. L.; Song, H. B.; Fanga, J. X. Adv. Synth. Catal. 2009, 351, 1575-1585; (b) Comas-Vives, A.; Harvy,
77
J. N. Eur. J. Org. Chem. 2011, 5025-5035.

13. (a) Brenna, S.; Posset, T.; Furrer, J.; Blumel, J. Chem. Eur. J. 2006, 12, 2880-2888; (b) Harjani, J. R.; Farrell, J.; Garcia, M. T.; Singer, R. D.; Scammells P. J. Green Chem. 2009, 11, 821-829; (c) Petit, S.; Azzouz, R.; Fruit, C.; Bischoff, L.; Marsais, F. Tetrahedron Letters 2008, 49, 3663-3665; (d) Zhu, S.; Liang, R.; Jiang, H. Tetrahedron 2012, 68, 7949-7955; (e) Lake, B. R. M.; Bullough, E. K.; Williams, T. J.; Whitwood, A. C.; Little, M. A.; Willans, C. E. Chem. Commun. 2012, 48, 4887-4889; (f) Silvia, D. G.; Eduardo, C. E.; Jordi, B. B.; Edwin, D. S.; Slawin, M. Z. A.; Steven, P. N. Dalton Trans. 2010, 39, 7595-7606.

14. (a) Lazreg, F.; Slawin, A. M. Z., and Cazin, C. S. J. Organometallics 2012, 31, 7969-7975; (b) Chem. Eur. J. 2006, 12, 7558-7564; (c) Inorg. Chem.2011, 50, 8465-8476; (d) J. Organomet. Chem. 2012, 696, 4166-4172

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊