跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/11 05:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許書豪
研究生(外文):Hsu, Shu-Hao
論文名稱:狹窄水平雙套管中R-410A冷媒流量震盪與可變功率之週期性流動沸騰研究
論文名稱(外文):Time Periodic Flow Boiling of Refrigerant R-410A due to Refrigerant Flow Rate or Heat Flux Oscillations in a Horizontal Narrow Annular Duct
指導教授:林清發林清發引用關係
指導教授(外文):Lin, Tsing-Fa
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:183
中文關鍵詞:冷媒飽和流動沸騰
外文關鍵詞:refrigerantsaturated flow boiling
相關次數:
  • 被引用被引用:1
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本研究以實驗方式探討R-410A新冷媒在水平狹窄雙套管中流動沸騰熱傳(含次冷及飽和流動沸騰)及相關氣泡特徵之影響。流道之間隙為2.0 mm。我們探討了冷媒質通量或熱功率振盪、周期、飽和溫度、以及熱通量對熱傳係數及氣泡特徵的影響。氣泡特徵包含氣泡脫離直徑和頻率以及成核密度可由流場觀測得之。在實驗中,冷媒平均質通量從300到500 kg/m2s,振幅為10,20 和30%,熱震盪振幅為10,30和50%,周期都分別為20、60、120s,平均冷媒飽和溫度為5, 10和15℃。
在第一部份探討流量震盪的影響。流量在振盪過程中,在相對應的瞬時壁溫、熱傳遞係數、氣泡脫離直徑、脫離頻率和成核址密度也會有振盪的現象發生,但是當流量振盪的振幅和週期經過時間平均化之後的飽和態流動的暫態流動沸騰熱傳特徵沒有明顯的影響,類似穩態的流動沸騰。然後我們定義單相沸騰、漸歇性沸騰、完全沸騰。除此之外,在高振盪振幅、長週期的情況下對其壁溫會造成更強烈的振盪情況發生。冷媒的飽和溫度和質通量對壁溫的振盪並無比較大的影響。壁溫氣泡脫離直徑、脫離頻率和成核址密度震盪頻率和流量相同。在流量震盪的時候,隨流量減少時振幅所造成成核址密度振盪遠大於氣泡脫離直徑和脫離頻率所以使的壁溫降低、熱傳變好。
在第二部份探討熱功率震盪的影響。熱量在震盪過程中,壁溫、熱傳遞係數、氣泡脫離直徑、脫離頻率和成核址密度也會有振盪的現象發生,但是會有相當明顯的壁溫落後其熱量變化的時間,也就是熱量最高時,壁溫會在過一小段時間才到達最高。另外當熱量振盪的振幅和週期經過時間平均化之後的飽和態流動的暫態流動沸騰熱傳特徵沒有明顯的影響,類似穩態的流動沸騰。在高振盪振幅、長週期的情況下對其壁溫氣泡脫離直徑、脫離頻率和成核址密度會造成更強烈的振盪情況發生。

An experiment is carried out here to investigate the heat transfer and associated bubble characteristics in time periodic flow boiling of refrigerant R-410A in a horizontal narrow annular duct subject to a time periodic mass flux or heat flux oscillation. Both the imposed mass flux and heat flux oscillations are in the form of triangular waves. Effects of the refrigerant mass flux oscillation, heat flux oscillation, and refrigerant saturated temperature on the temporal flow boiling heat transfer and bubble characteristics are examined. The bubble characteristics at the middle axial location of the duct are obtained from the flow visualization of the boiling flow, including the time variations of the bubble departure diameter and frequency and active nucleation site density. The present experiment is conducted for the mean refrigerant mass flux varied from 300 to 500 kg/m2s, the amplitude of the mass flux oscillation is fixed at 10, 20 and 30% and the amplitude of the heat flux oscillation is fixed at 10, 30 and 50% of their respective mean levels and , and the period of the G or q oscillation is fixed at 20, 60 and 120 seconds. The mean refrigerant saturation temperature is set at 5, 10 and 15 ℃. The gap of the duct is fixed at 2.0 mm. The measured boiling heat transfer data are expressed in terms of the boiling curves and boiling heat transfer coefficients along with the time variations of the heated wall temperature.
In the first part of the present study the measured heat transfer data for the R-410A flow boiling for a constant coolant mass flux are first compared with the time-average data for the flow subject to a time periodic mass flux oscillation. This comparison shows that the mass flux oscillation exerts negligible influences on the time-average boiling heat transfer coefficients. Then, we present the data to elucidate the effects of the experimental parameters on the amplitude of Tw oscillation over a wide range of the imposed heat flux covering the single-phase, intermittent and persistent boiling flow regimes. The results indicate that the Tw oscillation is stronger for a higher amplitude and a longer period of the mass flux oscillation. However, the mean saturated temperature of the refrigerant exhibits much weaker effects on the Tw oscillation and the mean refrigerant mass flux exerts nonmonotonic effects on the amplitude of the Tw oscillation. Moreover, the heated wall temperature, bubble departure diameter and frequency, and active nucleation site density are found to oscillate periodically in time and at the same frequency as the mass flux oscillation. Furthermore, the oscillations of dp, f and nac are somewhat like triangular waves. In the first half of the cycle in which the mass flux decreases linear increases in dp and nac and linear decrease in f are found. The effect of on nac oscillation is much stronger than on dp and f oscillation causing the heated wall temperature to decrease and heat transfer coefficient to increase at reducing G in the flow boiling opposed to that in the single-phase flow. But they are only slightly affected by the period of the mass flux oscillation. Besides, a small time lag in the Tw oscillation is also noted.
In the second part of the present study the measured heat transfer data for the R-410A flow boiling for a constant heat flux are also first compared with the time-average data for a time periodic heat flux oscillation. This comparison shows that the time-average heat transfer coefficients are not affected by the time periodic heat flux oscillation to a significant degree. Then, we present the data to elucidate the effects of the experimental parameters on the amplitude of Tw oscillation over a wide range of the mean imposed heat flux covering the single-phase, intermittent and persistent boiling flow regimes. The results indicate that the Tw oscillation gets stronger for a higher amplitude and a longer period of the imposed heat flux oscillation and for a higher mean imposed heat flux. Moreover, a significant time lag in the heated surface temperature oscillation is also noted, which apparently results from the thermal inertia of the copper inner pipe. The effects of the heat flux oscillation at extremely short and long periods have been explored. Due to the existence of the thermal inertia of the heated copper duct, the resulting heated surface temperature does not oscillate with time at an extremely short period of the imposed heat flux oscillation. When the mean imposed heat flux is close to the heat flux corresponding to that for the onset of stable flow boiling, intermittent flow boiling appears. A flow regime map and an empirical correlation are given to delineate the boundaries separating different boiling flow regimes in the annular duct subject to imposed heat flux oscillation. Furthermore, the bubble departure diameter and frequency, and active nucleation site density also oscillate periodically in time and at the same frequency as the heat flux oscillation. The results also show that the oscillations in dp, f and nac get larger for a long period and a larger amplitude of the impose heat flux oscillation and for a higher mean imposed heat flux. Furthermore, the bubbles become smaller and more dispersed after the time lag when the imposed heat flux decreases with time. The opposite processes take place at increasing heat flux.

CONTENTS
ABSTRACT (CHINESE) i
ABSTRACT (ENGLISH) ii
CONTENTS v
LIST OF TABLES vi
LIST OF FIGURES viii
NOMENCLATURE xiv
CHAPTER 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Literature Review 2
1.2.1 Stable Flow Boiling Heat Transfer 2
1.2.2 Time Periodic Flow Boiling Heat Transfer 4
1.2.3 Flow Patterns and Bubble Characteristics 6
1.2.4 Correlation Equations for Flow Boiling Heat Transfer 7
1.3 Objective of the Present Study 8
CHAPTER 2 EXPERIMENTAL APPARATUS AND PROCEDURES 13
2.1 Refrigerant Flow Loop 13
2.2 Test Section 14
2.3 Water Loop for Preheater 15
2.4 Water-Glycol Loop 15
2.5 DC Power Supply 16
2.6 Photographic System 16
2.7 Data Acquisition 17
2.8 Experimental Procedures 17
2.9 Experimental Parameters 18
CHAPTER 3 DATA REDUCTION 27
3.1 Flow Boiling Heat Transfer Coefficient 27
3.2 Flow Boiling Bubble Characteristics 29
3.3 Uncertainty Analysis 30
CHAPTER 4 TIME PERIODIC SATURATED FLOW BOILING OF R-410A IN NARROW ANNULAR DUCT DUE TO MASS FLUX OSCILLATION 33
4.1 Single-phase Heat Transfer 33
4.2 Stable and Time-average Saturated Flow Boiling Curves and Heat Transfer Coefficients 34
4.3 Time periodic flow boiling heat transfer characteristics 35
4.4 Intermittent Boiling 38
4.5 Time Periodic Bubble Characteristics in Saturated Flow Boiling 39
CHAPTER 5 TIME PERIODIC SATURATED FLOW BOILING OF R-410A IN A NARROW ANNULAR DUCT DUE TO HEAT FLUX OSCILLATION 101
5.1 Time-average Saturated Flow Boiling Curves and Heat Transfer Coefficients 102
5.2 Time Periodic Flow Boiling Heat Transfer Characteristics 102
5.3 Intermittent Boiling 103
5.4 Effect of Heat Flux Oscillation at Extremely Short and Long Periods 104
5.5 Effect of Heat Flux Oscillation Amplitude 105
5.6 Time Periodic Bubble Characteristics in Saturated Flow Boiling 105
CHAPTER 6 Comparison of Flow Boiling in R-410A and R-134a 161
6.1 Comparison of Saturated Flow Boiling in R-410A and R-134a 161
6.2 Comparison of Time Periodic Flow Boiling in R-410A and R-134a Due to Mass Flux Oscillation 161
6.3 Comparison of Time Periodic Flow Boiling in R-410A and R-134a Due to Heat Flux Oscillation 162

1. S. G. Kandlikar, and W. J. Grande, Evolution of microchannel flow passages-thermohydraulic performance and fabrication technology, Heat Transfer Engineering, 24(1)(2003)3-17.
2. P. A. Kew and K. Cornwell, Correlations for the prediction of boiling heat transfer in small-diameter channels, Applied Thermal Engineering 17(1997)705-715.
3. Y. Y. Hsieh, Y. M. Lie and T. F. Lin, Saturated flow boiling heat transfer of refrigerant R-410A in a horizontal annular finned duct, International Journal of Heat and Mass Transfer, 50(2007)1442-1454
4. C. C. Wang, W. T. Shieh, Y. J. Chang, An experimental study of convective boiling of refrigerants R-22 and R-410A, ASHRAE Trans. 121 (1998) 1144-1150.
5. T. Ebisu, K. Torikoshi, Heat transfer characteristics and correlations for R-410A flowing inside a horizontal smooth tube, ASHRAE Trans. 121 (1998) 556-561.
6. Y. Fujita, Y. Yang and N. Fujita, Flow boiling heat transfer and pressure drop in uniformly heated small tubes, Proceedings of the Twelfth International Heat Transfer Conference 3(2002)743-748.
7. F. C. Hiseh, K. W. Lin, Y. M. Lie, C. A. Chen, and T. F. Lin, Saturated flow boiling heat transfer of R-407C and associated bubble characteristics in narrow annular duct, International Journal of Heat and Mass Transfer, 51 (2008) 3763-3775.
8. Y. M. Lie and T. F. Lin, Saturated flow boiling heat transfer and associated bubble characteristics of R-134a in a narrow annular duct, International Journal of Heat and Mass Transfer 48(25-26)(2005)5602-5615.
9. Y. M. Lie and T. F. Lin, Subcooled flow boiling heat transfer and associated bubble characteristics of R-134a in a narrow annular duct, International Journal of Heat and Mass Transfer, 49 (2006) 2077-2089.
10. Z. Y. Bao, D. F. Fletcher and B. S. Haynes, Flow boiling heat transfer of Freon R11 and HCFC123 in narrow passages, International Journal of Heat and Mass Transfer 43(18)(2000)3347-3358.
11. T. N. Tran, M. W. Wambsganss and D. M. France, Small circular- and rectangular-channel boiling with two refrigerants, International Journal of Multiphase Flow 22(1996)485-498.
12. S. G. Kandlikar and M. E. Steinke, Flow boiling heat transfer coefficient in minichannels – correlation and trends, Proceedings of the Twelfth International Heat Transfer Conference, vol.3(2002)785-790.
13. H. Oh, M. Katsuta and K. Shibata, Heat transfer characteristics of R134a in a capillary tube heat exchanger, Proceedings of 11th International Heat Transfer Conference, Vol. 6,1998, pp.131-136.
14. C. P. Yin, Y. Y. Yan, T. F. Lin, and B. C. Yang, Subcooled flow boiling heat transfer of R-134a and bubble characteristics in a horizontal annular duct, International Journal of Heat and Mass Transfer, 43 (2000) 1885-1896.
15. C. A. Chen, W. R. Chang, K. W. Li, Y. M. Lin, and T. F. Lin, Subcooled flow boiling heat transfer of R-407C and associated bubble characteristics in a narrow annular duct, International Journal of Heat and Mass Transfer, 52 (2009) 3147-3158.
16. O. Comakli, S. Karsli, and M. Yilmaz, “Experimental investigation of two phase flow instabilities in a horizontal in-tube boiling system,” Energy Conversion and Management 43 (2002) 249-268
17. S. Kakac, T. N. Veziroglu, M. M. Padki, L. Q. Fu, and X. J. Chen, “Investigation of Thermal Instabilities in a Forced Convection Upward Boiling System,” Experimental Thermal and Fluid Science 3 (1990) 191-201.
18. Y. Ding, S. Kakac, and X. J. Chen, “Dynamic Instabilities of Boiling Two-Phase Flow in a Single Horizontal Channel,” Experimental Thermal and Fluid Science 11 (1995) 327-342.
19. Q. Wang, X. J. Chen, S. Kakac, and Y. Ding, “Boiling Onset Oscillation : a new type of Dynamic Instability in a Forced-Convection Upflow Boiling System,” International Journal of Heat and Fluid Flow 17( 1996) 418-423s
20. M Ozawa, H Umekawa, Y Yoshioka and A Tomiyama, Dryout under oscillatory flow condition in vertical and horizontal tubes : experiments at low velocity and pressure conditions, International journal of heat and mass transfer, 36 (1983) 4076-4078.
21. I. Kataoka, A. Serizawa and A. Sakurai, “Transient Boiling Heat Transfer Under Forced Convection,” International Journal of Heat and Mass Transfer 26 (1983) 583-595.
22. S. Lin, P.A. Kew and K. Cornwell, “Two-Phase Heat Transfer to a Refrigerant in a 1mm Diameter Tube,” International Journal of Refrigeration 24 (2001) 51-56.
23. P. R. Mawasha and R. J. Gross, “Periodic Oscillations in a Horizontal Single Boiling Channel with Thermal Wall Capacity,” International Journal of Heat and Fluid Flow 22 (2001) 643-649.
24. P. R. Mawasha, R. J. Gross, and D. D. Quinn, “Pressure-Drop Oscillations in a Horizontal Single Boiling Channel,” Heat Transfer Engineering 22 (2001) 26-34.
25. K. Cornwell and P. A. Kew, Boiling in small parallel channels, Energy Efficiency in Process Technology, P.A. Pilavachi, Elsevier Applied Science, London, 1993, pp. 624-638.
26. R. Situ, Y. Mi, M. Ishii and M. Mori, Photographic study of bubble behaviors in forced convection subcooled boiling, International Journal of Heat and Mass Transfer 47(2004)3659-3667.
27. G. E. Thorncroft, J. F. Klausner and R. Mei, An experimental investigation of bubble growth and detachment in vertical upflow and downflow boiling, International Journal of Heat and Mass Transfer 41 (1998) 3857-3871
28. S. G. Kandlikar, “Bubble Nucleation and Growth Characteristics in Subcooled Flow Boiling of Water,” National Heat Transfer Conference HTD-Vol. 342 4 (1997) 11-18
29. S. H. Chang, I. C. Bang and W. P. Baek, A photographic study on the near-wall bubble behavior in subcooled flow boiling, International Journal of Thermal Science 41(2002)609-618.
30. Victor H. Del Balle M. and D. B. R. Kenning, Subcooled flow boiling at high heat flux, International Journal of Heat and Mass Transfer 28(10)(1985)1907-1920
31. R. Maurus, V. Ilchenko and T. Sattelmayer, Automated high-speed video analysis of the bubble dynamics in subcooled flow boiling, International Journal of Heat and Fluid Flow 25(2004)149-158.
32. T. Okawa, T. Ishida, I. Kataoka and M. Mori, An experimental study on bubble rise path after the departure from a nucleation site in vertical upflow boiling, Experimental Thermal and Fluid Science 29(2005)287-294.
33. J. C. Chen, A correlation for boiling heat transfer to saturated fluids in convective flow, Ind. Engng. Chem. Proc. Des. Dev. 5(1966)322-329.
34. F. W. Dittus and L. M. K. Boelter, Heat transfer in automobile radiator of the tube type, Publication in Engineering, University of California, Berkley, 2(1930)250.
35. K. E. Gungor and R. H. S. Winterton, A general correlation for flow boiling in tubes and annuli, International Journal of Heat and Mass Transfer 29(1986)351-358.
36. Z. Liu and R. H. S. Winterton, A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation, International Journal of Heat and Mass Transfer 34(1991)2759-2766.
37. W. Zhang, T. Hibiki and K. Mishima, Correlation for flow boiling heat transfer in mini-channels, International Journal of Heat and Mass Transfer 47(2004)5749-5763.
38. G. M. Lazarek and S. H. Black, Evaporative heat transfer, pressure drop and critical heat flux in a small vertical tube with R-113, International Journal of Heat and Mass Transfer, 25(7)(1982)945-960.
39. S. G. Kandlikar, A general correlation for two-phase flow boiling heat transfer coefficient inside horizontal and vertical tubes, Journal of Heat Transfer 102(1990)219-228.
40. S. G. Kandlikar, A model for predicting the two-phase flow boiling heat transfer coefficient in augmented tube and compact heat exchanger geometries, Journal of Heat Transfer 113(1991)966-972.
41. S. G. Kandlikar and P. Balasubramanian, An extension of the flow boiling correlation to transition, laminar, and deep laminar flows in minichannles and microchannels, Heat Transfer Engineering 25(2004)86-93.
42. S. W. Churchill and H. H. S. Chu, Correlating equations for laminar and turbulent free convection from a horizontal cylinder, International Journal of Heat and Mass Transfer 18(1975)1049-1053.
43. S. J. Kline and F. A. McClintock, Describing uncertainties in single-sample experiments, Mech. Eng. 75(1)(1953)3-12.
44. V. Gnielinski, New equations for heat and mass transfer in turbulent pipe and channel flow, International Chemical Engineering 16(2)(1976)359-368.
45. C. A. Chen, Time periodic flow boiling heat transfer of refrigerant R-134a in a horizontal annular duct due to flow rate or heat flux oscillation, Ph.D thesis, National Chiao Tung University, Hsinchu, Taiwan (2010).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文