跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/14 07:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林政廷
研究生(外文):Jheng-Ting Lin
論文名稱:高速全域式光學同調斷層掃描術於活體皮膚及角膜影像分析
論文名稱(外文):In Vivo Skin and Cornea Using High-speed Mirau-based Full-field Optical Coherence Tomography
指導教授:黃升龍
口試委員:詹明哲陳宏銘李翔傑
口試日期:2019-07-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:111
中文關鍵詞:高速Mirau-based全域式光學同調斷層掃描系統皮膚角膜角膜內皮細胞密度紅血球流速
DOI:10.6342/NTU201904031
相關次數:
  • 被引用被引用:0
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在皮膚及角膜的醫療診斷上,若能同時提供疾病橫向以及縱向上影像,有助於判斷確切的病理位置、結構以及細胞形貌。全域式光學同調斷層掃描術是一種時域式光學同調斷層掃描術,主要是移動PZT線性平台來掃描樣本不同深度的影像,通過二維相機來擷取二維影像,來構建出三維斷層影像,且其掃描速度取決於相機的畫面更新率。如今,大多數全域式光學同調斷層掃描術的掃描速度太慢,於掃描樣本組織上會花費太多時間,容易因為樣本或環境的振動導致影像品質變差。
本論文利用擁有高空間解析度的Mirau-based全域式光學同調斷層掃描系統並搭配畫面更新率為1051 fps的高速相機來量測活體人類皮膚與大鼠角膜,其影像大小分別為960x960x897 pixels以及960x960x574 pixels,掃描時間僅需3.6秒以及2.4秒。在高空間解析度以及高速掃描下,活體人體皮膚與大鼠角膜的組織結構可以被清楚解析,例如皮膚表皮層與真皮層交界、角膜各層分界、組織細胞邊界與形貌,此外針對角膜內皮細胞的密度也可量化出來,約2384±278 cell/mm2。藉由高速的量測,位於微血管中的單顆紅血球流動變化也可被觀測,並且計算紅血球流速,約95.54±27.82 μm/s。
在醫療上,本論文中所展示的高速Mirau-based全域式光學同調斷層掃描系統,不僅能提供在橫向及縱向上的高解析度影像,也能夠大幅縮短量測樣本時間,並可減少在量測上環境的震動影像。
For precise diagnosis skin and cornea pathology, en face and cross-section images are required to determine the exact pathological position, structure and cell morphology at the same time. Full-field optical coherence tomography (FF-OCT) is a kind of time-domain OCT, that scans different depth of tissues by moving PZT linear stage and collects 2-D images by camera to construct 3-D tomogram in real time. The scanning speed is depended on the frame rate of camera. Nowadays, the scanning speed of most FF-OCT are too slow, so scanning tissue will spend too much time and image quality may be worse by vibration from tissue or environment.
Using high-resolution Mirau-based FF-OCT with high-speed CMOS, which frame rate is 1051 fps, 960x960x897 pixels of in vivo human skin and 960x960x574 pixels of in vivo rat cornea were scanning in 3.6 s and 2.4 s, respectively. With high spatial resolution and high-speed scanning, the structure of skin and cornea could be distinguished clearly, such like skin dermis-epidermis junction (DEJ), different corneal layers, cell morphology and boundary. The endothelium cell density of rat cornea was quantified as 2384±278 cell/mm2. Movement of single red blood cell (RBC) in microvessel could be detected, and the velocity could also be calculated as 95.54±27.82 μm/s by high-speed measurement.
The high-speed Mirau-based FF-OCT not only can provide high quality lateral and axial images, but also can significantly reduce scanning time to reduce the vibration from tissue or environment.
致謝 I
摘要 II
Abstract III
圖目錄 VI
表目錄 XII
第一章 緒論 1
第二章 光學同調斷層掃描術理論以及皮膚、角膜結構簡介 3
2.1光學同調斷層掃描術基本理論 3
2.2 高速Mirau-based全域式光學同調斷層掃描系統 11
2.2.1系統架構 11
2.2.2 干涉訊號之處理 18
2.2.3 掃描速度 20
2.2.4 系統之橫向、縱向解析度 22
2.2.5 訊號隨深度之衰減量測 25
2.3 皮膚、角膜結構 27
2.3.1 皮膚結構 27
2.3.2 角膜結構 32
第三章 高速CMOS相機 36
3.1 高速相機之感光元件 36
3.2 高速CMOS相機之功能 45
3.3 高速CMOS相機之系統特性量測 51
3.3.1 光子轉移曲線 51
3.3.2 光功率需求 55
3.2.3 干涉效率 60
3.3.4 訊雜比 61
第四章 皮膚、角膜量測及分析 64
4.1 In vivo 人體皮膚之影像與分析 66
4.1.1 活體皮膚各層影像 66
4.1.2 血球影像及流速計算 71
4.2 In vivo 動物角膜之影像與分析 76
4.2.1 活體大鼠量測方法 76
4.2.2 活體角膜各層影像 77
4.2.3 角膜內皮細胞密度計算 84
4.3 不同掃描倍速下之活體皮膚、角膜影像 85
4.3.1活體皮膚影像於不同掃描速度之分析 86
4.3.2活體角膜影像於不同掃描速度之分析 92
第五章 結論與未來展望 97
5.1 結論 97
5.2 未來展望 99
參考文獻 100
附錄1 活體斷層影像 105
附錄2 高速相機參考資料及LabVIEW程式 107
[1]E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Optics Letters, vol. 23, pp. 244–246, 1998.
[2]E. Dalimier, and D. Salomon, “Full-field optical coherence tomography: a new technology for 3D high-resolution skin imaging,” Dermatology, vol. 224, pp. 84–92, 2012.
[3]J. R. Durkin, L. Ogrich, D. Morales-Neira, S. Dundumalla, and M. Abdelmalek, “Freeze artifact on full-field optical coherence tomography skin imaging,” Skin Research & Technology, vol. 24, pp. 54–58, 2018.
[4]W. Ghouali, et al., “Full-field optical coherence tomography of human donor and pathological corneas,” Current Eye Research, vol. 40, pp. 526–534, 2014.
[5]V. Mazlin, et al., “In vivo high resolution human corneal imaging using full-field OCT,” Biomedical Optics Express, vol. 9, pp. 557–568, 2018.
[6]E. Auksoriusand, A.C. Boccara, “Fingerprint imaging from the inside of a finger with full-field optical coherence tomography,” Biomedical Optics Express, vol. 6, pp. 4465–4471, 2015.
[7]S. Nandy, M. Sanders, and Q. Zhu, “Classification and analysis of human ovarian tissue using full field optical coherence tomography,” Biomedical Optics Express, vol. 7, pp. 5182–5187, 2016.
[8]W. Drexler and J. G. Fujimoto, “Optical coherence tomography-technology and application,” Springer, 2015.
[9]http://mathworld.wolfram.com/Wiener-KhinchinTheorem.html
[10]吳東憶, “ In-Vivo Skin Measurement Using High Definition Mirau-based Full Field Optical Coherence Tomography, ” 國立台灣大學碩士論文, 2015.
[11]M. Azimipour et al., “Functional retinal imaging using adaptive optics swept-source OCT at 1.6 MHz,” Optica, vol. 6, pp. 300–303, 2019.
[12]S. W. Lee et all., “Optimization for Axial Resolution, Depth Range, and Sensitivity of Spectral Domain Optical Coherence Tomography at 1.3 µm,” The journal of the Korean Physical Society, vol. 55, pp. 2354–2360, 2009.
[13]T. Gambichler, A. Pljakic, and L. Schmitz, “Recent advances in clinical application of optical coherence tomography of human skin,” Clinical, Cosmetic and Investigational Dermatology, vol. 8, pp. 345–54, 2015.
[14]M. Ang, et al., “Anterior segment optical coherence tomography,” Progress in Retinal and Eye Research, vol. 66, pp. 132–156, 2018.
[15]https://www.e-champ.com.tw/skin.php
[16]https://angelialin.pixnet.net/blog/post/285001325【美容筆記】皮膚的構造、紋理、附屬器官
[17]https://mikevgh.pixnet.net/blog/post/25185686皮膚生理構造
[18]http://bestofbothworldsaz.com/2010/09/20/chemical-peels-101-a-lesson-in-skin-anatomy-chemical-peel-levels-and-peeling-agents/
[19]http://icharming01.pixnet.net/blog/post/35224140-基礎篇---皮膚結構、生理與膚質
[20]S. Patel, J. Marshall, and F. W. Fitzke, “Refractive index of the human corneal epithelium and stroma,” Journal of Refractive Surgery, vol. 11, pp. 100–141, 1995.
[21]A. J. Hertsenberg and J. L. Funderburgh, “Stem cells in the cornea,” Progress in Molecular Biology and Translational Science, vol. 134, pp. 25–41, 2015.
[22]A. O. Eghrari, S. A. Riazuddin, and J. D. Gottsch, “Overview of the cornea: Structure, function, and development,” Progress in Molecular Biology and Translational Science, vol. 134, pp. 7–23, 2015.
[23]https://www.modernmgz.com/mod.php?ap=28
[24]Z. Chen, et al., “Biomaterials for corneal bioengineering,” Biomedical Materials, vol. 13, 2018.
[25]https://www.easyatm.com.tw/wiki/眼角膜
[26]D. W. DelMonte and T. Kim, “Anatomy and physiology of the cornea,” Journal of Cataract & Refractive Surgery, vol. 37, pp. 588–598, 2011.
[27]https://webeye.ophth.uiowa.edu/eyeforum/tutorials/Cornea-transplant-donor-to-recipient/index.htm.
[28]https://thinklucid.com/tech-briefs/understanding-digital-image-sensors/.
[29]http://meroli.web.cern.ch/lecture_cmos_vs_ccd_pixel_sensor.html.
[30]https://zh.wikipedia.org/wiki/Exmor.
[31]M. Sato, et al., “In vivo rat brain imaging through full-field optical coherence microscopy using an ultrathin short multimode fiber probe,” Applied Sciences, vol. 9, p. 216, 2019.
[32]Y. Zhu and W. Gao, “Single-shot wavelength-independent phase-shifting method for full-field optical coherence tomography,” Applied Optics, vol. 58, pp. 806–813, 2019.
[33]E. Auksorius and A. C. Boccara, “Dark-field full-field optical coherence tomography,” Optics Letters, vol. 40, pp. 3272–3275, 2015.
[34]T. Anna, C. M. Lai, A. Chiou, and W. C. Kuo, “En-face sectional imaging using single-shot full-field optical coherence tomography (SS-FF-OCT) based on white light emitting diode (WLED),” Optics in Health Care and Biomedical Optics VII, vol. 10024, 2016.
[35]H. Sudkamp, et al., “In vivo retinal imaging with off-axis full-field time-domain optical coherence tomography,” Optics Letters, vol. 41, pp. 4987–4990, 2016.
[36]S. H. Lu, C. J. Chang, and C. F. Kao, “Full-field optical coherence tomography using immersion Mirau interference microscope,” Applied Optics, vol. 52, pp. 4400–4403, 2013.
[37]A. Federici, A. Dubois, “Full-field optical coherence microscopy with optimized ultrahigh spatial resolution,” Optics Letters, vol. 40, pp. 5347–5350, 2015
[38]E. Auksorius and A. C. Boccara, “Fast subsurface fingerprint imaging with full-field optical coherence tomography system equipped with a silicon camera,” Journal of Biomedical Optics, vol. 22, pp. 1–8, 2017.
[39]https://optronis.com/en/products/cp70-1-mc-1000/.
[40]James R. Janesick, “Photon Transfer,” SPIE Press, 2007.
[41]P. Zakharov, F. Dewarrat, A. Caduff, and M. Talary, “The effect of blood content on the optical and dielectric skin properties,” Physiological Measurement, vol. 32, pp. 131–149, 2011.
[42]http://www.blood.org.tw/Internet/main/docDetail.aspx?uid=6536&pid=6387&docid=23909
[43]M. Diez-Silva, M. Dao, J. Han, C. T. Lim, and S. Suresh, “Shape and biomechanical characteristics of human red blood cells in health and disease,” MRS Bulletin, vol. 35, pp. 382–388, 2010.
[44]B. König and M. Gratzel, “Human granulocytes detected with a piezoimmunosensor,” Analytical Letters, vol. 26, pp. 2313–2328, 1993.
[45]Y. K. Park, et al., “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, pp. 13730–13735, 2008.
[46]J. Yoon, et al., “Label-free characterization of white blood cells by measuring 3D refractive index maps,” Biomedical Optics Express, vol. 6, pp. 3865–3875, 2015.
[47]E. N. Lazareva and V. V. Tuchin, “Blood refractive index modelling in the visible and near infrared spectral regions,” Journal of Biomedical Photonics & Engineering, vol. 4, pp. 010503, 2018.
[48]C. C. Wu, G. Zhang, T. C. Huang, and K. P. Lin, “Red blood cell velocity measurements of complete capillary in finger nail-fold using optical flow estimation,” Microvascullar Research vol. 78, pp. 319–324, 2009.
[49]V. Mazlin et al., “In vivo high resolution human corneal imaging using full-field optical coherence tomography,” Biomedical Optics Express, vol. 9, pp. 557–568 2018.
[50]W. Ghouali, et al., “Full-field optical coherence tomography of human donor and pathological corneas,” Current Eye Research, vol. 40, pp. 526–534, 2015.
[51]陳昱彤, “Animal Eye Models Using Full-field Optical Coherence Tomography,” 國立台灣大學碩士論文, 2018.
[52]S. Chen, et al., “Visualizing micro anatomical structures of the posterior cornea with micro-optical coherence tomography,” Scientific Reports, vol. 7, p. 10752, 2017.
[53]E. R. Mackow, E. E. Gorbunova, and I. N. Gavrilovskaya, “Endothelial cell dysfunction in viral hemorrhage and edema,” Frontiers in Microbiology, vol. 5, p. 733, 2015.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top