跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.169) 您好!臺灣時間:2025/10/30 00:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江民陞
研究生(外文):Min-Sheng Chiang
論文名稱:十二位元極低功率連續漸進式類比數位轉換器之設計與實現
論文名稱(外文):Design and Implementation of 12-bit Ultra-Low-Power SAR ADCs
指導教授:鍾勇輝
指導教授(外文):Yung-Hui Chung
口試委員:鍾勇輝陳伯奇陳筱青陳信樹
口試委員(外文):Yung-Hui ChungPoki ChenHsiao-Chin ChenHsin-Shu Chen
口試日期:2019-07-30
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:80
中文關鍵詞:極低功率連續漸進式類比數位轉換器同步的控制時序旁通窗式交換式電容
外文關鍵詞:low powerSAR ADCsynchronous clock timingBypass windowcapacitor sawpping
相關次數:
  • 被引用被引用:0
  • 點閱點閱:303
  • 評分評分:
  • 下載下載:69
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討十二位元連續漸進式(SAR)類比數位轉換器(ADC)之設計與實現。這個ADC架構主要是以連續漸進式類比數位轉換器為基礎,為了降低消耗功率,搭配使用同步時序操作與低電壓運作。另外,本論文提出新的旁通窗式切換應用於心電圖(EKG)。為了滿足十二位元的線性度要求,在數位類比轉換器(DAC)中,使用旁通窗式切換以及電容交換技術,可以得到更好的線性度。
在聯電的180奈米製程下,我們實現兩個連續漸進式類比數位轉換器。第一個類比數位轉換器是一個十二位元同步連續漸進式類比數位轉換器,其晶片面積是0.095平方毫米。在0.7伏特操作電壓以及100 kHz取樣頻率下,功耗是735 nW。量測到的動態效能,有效位元為10.4 bits;訊噪失真比(SNDR)為64 dB;無雜散動態範圍(SFDR)為75dB。在使用電容交換技術之後, SFDR提升到85dB。第二個類比數位轉換器是一個應用於生醫領域十二位元旁通窗式切換連續漸進式類比數位轉換器,其晶片大小為0.274平方毫米。在0.7伏特的操作電壓及100kHz的取樣頻率下,功耗是1.26 W。後模擬結果的動態效能:SNDR 是64 dB,SFDR是80 dB。
This thesis is aimed to present 12-bit Ultra low power successive approximation register (SAR) analog-to-digital converters (ADCs). In order to save the power, the ADC architecture is proposed using the synchronous clocking operation and low voltage supply. Besides, by applying a bypass window for EKG signals. To achieve the 12-bit linearity requirement, the bypass window and capacitor-swapping switching techniques are applied in the DAC.
Two ADCs were implemented in UMC 180 nm CMOS process. The first one is a 12-bit Synchronous-SAR ADC for IoT applications, which occupies an active area of 0.095 〖"mm" 〗^"2" . At 100-MS/s, the ADC consumes a total power of 735nW from a 0.7V supply. The measured ENOB is 10.4 bits. Without the capacitor swapping scheme, the measured SNDR and SFDR are 64 dB and 75 dB, respectively. After using the swapping scheme, the SFDR is improved to 85 dB. The other one is a 12-bit SAR ADC which occupies an active area of 0.274 〖"mm" 〗^"2" . Using a 0.7V supply with the sampling rate of 100 kHz, the total power is 1.26 W. The measured SNDR and SFDR are 64 dB and 80 dB, respectively.
摘要 I
Abstract. II
致 謝…………………………………………………………………III
目 錄…………………………………………………………………IV
圖目錄…………………………………………………………………VII
表目錄………………………………………………………………. X
第一章 緒論 1
1-1 研究動機與目的 1
1-2 章節說明 3
第二章 文獻回顧 4
2-1 各種架構類比數位轉換器之比較 4
2-2 連續漸進式類比數位轉換器 8
第三章 同步時序分析、交換式電容與旁通窗式切換技術 10
3-1 同步時序分析 10
3-1-1 非同步時序分析 11
3-1-2 同步時序分析 12
3-1-3 同步時序之架構 12
3-2 交換式電容技術 14
3-3 旁通窗式切換技術 16
3-3-1 二元窗式切換技術 16
3-3-2 旁通窗式切換技術 18
第四章 一個應用於物聯網的十二位元同步連續漸進式類比數位轉換器之晶片實現 20
4-1 十二位元同步連續漸進式類比數位轉換器之架構 20
4-2 取樣電路 24
4-3 比較器 26
4-4 數位類比轉換器 27
4-4-1 交換式電容技術 28
4-4-2 數位類比轉換器之切換 31
4-4-4 數位類比轉換器電容陣列設計 32
4-5 邏輯控制電路 36
4-6 佈局考量 37
4-7 模擬結果 39
4-8 量測結果 40
4-9-1 實驗設定 40
4-9-2 動態效能 42
4-9-3 靜態效能 44
4-9-4 使用電容交換技術之效能改善 45
4-9-5 結論 47
第五章 一個運用生醫領域的十二位元旁通窗式連續漸進式類比數位轉換器之晶片實現 48
5-1 旁通窗式連續漸進式類比數位轉換器架構 48
5-2 取樣電路 49
5-3 數位類比轉換器之更動 52
5-4 旁通窗式切換分析 55
5-5 連續漸進式控制邏輯電路 58
5-6 模擬結果 60
5-7 佈局考量 62
第六章 結論與未來展望 63
6-1 結論 63
6-2 未來展望 64
參考文獻 65
[1] B. Murmann, “ADC Performance Survey 1997-2019,” [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html
[2] S. H. Lewis, “Optimizing the stage resolution in pipelined, multistage, analog-to-digital converters for video-rate applications,” IEEE Trans. Circuits Syst. II, vol. 39, no. 8, pp. 516–523, Aug. 1992.
[3] C. C. Lee, C. Y. Lu, R. Narayanaswamy, J. B. Rizk, “A 12b 70MS/s SAR ADC with digital startup calibration in 14nm CMOS”, 2015 Symposium on VLSI Circuits Digest of Technical Papers, Kyoto, pp. C62-63
[4] M. Inerfield, et al., “An 11.5-ENOB 100-MS/s 8mW Dual-Reference SAR ADC in 28nm CMOS,” IEEE Symp. VLSI Circuits, pp. 192-193, June 2014.
[5] C.-C Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin, C.-M. Huang, and C.-H. Huang, “A 10b 100MS/s 1.13mW SAR ADC with binary scaled error compensation,” in IEEE ISSCC Dig. Tech. Papers, pp.386–387, Feb. 2010.
[6] Z. Zhang, W.-C Yu and G.-J Xie, “ A 10-bit 100-MS/s hybrid ADC based on flash-SAR architecture ,” IEEE Int. Conf. on Solid-State and Integrated Circuit Tech. Papers, Aug. 2016, pp. 725-727.
[7] T. Y. Wang, et al.” A Bypass-Switching SAR ADC With a Dynamic Proximity Comparator for Biomedical Applications”, IEEE Journal of Solid-State Circuits, vol. 53, Issue: 6, pp. 1747–1754, June, 2018
[8] Y.-H. Chung, C.-W. Yen, and M.-H. Wu, “A 24-μW 12-b 1-MS/s SAR ADC with two-step decision DAC switching in 110-nm CMOS,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 24, no. 11, pp. 3334–3344, Nov. 2016.
[9] A. O'Driscoll, et al., “Adaptive Resolution ADC Array for an Implantable Neural Sensor,” IEEE Trans. on Biomedical Circuits and Systems, vol. 5, no. 2, pp. 120–130, Apr. 2011.
[10] M. Dessouky and A. Kaiser, “Input switch configuration suitable for rail-to-rail operation of switched-opamp circuits,” IEE Electron. Lett., vol. 35, pp. 8-10, Jan. 1999.
[11] M. Miyahara, Y. Asada, D. Paik, and A. Matsuzawa, “A low-noise self- calibrating dynamic comparator for high-speed ADCs,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2008, pp. 269–272.
[12] W.-H. Tseng, W.-L. Lee, C.-Y. Huang, and P.-C. Chiu, “A 12-bit 104 MS/s SAR ADC in 28 nm CMOS for Digitally-Assisted Wireless Transmitters,” IEEE J. Solid-State Circuits, vol. 51, no. 10, pp. 2222-2231, Jul. 2016.
[13] W. Liu, P. Huang, and Y. Chiu, “A 12 b 22.5/45 MS/s 3.0 mW 0.059 mm2 CMOS SAR ADC achieving over 90 dB SFDR,” in IEEE ISSCC Dig. Tech. Paper, Feb. 2010, pp. 380–381.
[14] Y.-H. Chung, M.-H. Wu, and H.-S. Li, “A 12-bit 8.47-fJ/conversion-step capacitor-swapping SAR ADC in 110-nm CMOS,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 1, pp. 10–18, Jan. 2015.
[15] Y.-S. Hu, C.-H. Shih, H.-T. Tai, H.-W. Chen, H.-S. Chen , “A 0.6V 6.4fJ/conversion-step 10-bit 150MS/s subranging SAR ADC in 40-nm CMOS,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2014, pp. 81.
[16] M.-H. Wu, Y.-H. Chung, and H.-S. Li, “A 12-bit 8.47-fJ/Conversion-Step 1-MS/s SAR ADC using Capacitor-Swapping Technique,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2012, pp. 157-160.
[17] S. W. Chen and R. W. Brodersen, “A 6-bit 600-MS/s 5.3-mW Asynchronous ADC in 0.13-μm CMOS,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2669–2680, 2006.
[18] C.-C Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, ”A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp.731-740, Apr. 2010.
[19] P. Harpe, E. Cantatore, and A. van Roermund, "A 2.2/2.7fJ/conversion-step 10/12b 40kS/s SAR ADC with Data-Driven Noise Reduction," in ISSCC, Feb. 2013, pp. 270-271.
[20] A. H. T. Chang, “Low-Power High-Performance SAR ADC With Redundancy and Digital Background Calibration,” Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci., Massachusetts Inst. Technol., Cambridge, MA, USA, 2013.
[21] G.-Y. Huang, S.-J. Chang, C.-C. Liu, and Y.-Z. Lin, “A 1-μW 10-bit 200-kS/s SAR ADC with a bypass window for biomedical applications,” IEEE J. Solid–State Circuits, vol. 47, no. 11, pp. 2783–2795, Nov. 2012.
[22] C. C. Liu, S. J. Chang, G. Y. Huang, Y. Z. Lin, and C.M.Huang, “A1V 11 fJ/conversion-step 10 bit 10 MS/s asynchronous SAR-ADC in 0.18 μm CMOS,” in IEEE Symp. VLSI Circuits Dig., 2010, pp. 241–242.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊