|
[1] B. Murmann, “ADC Performance Survey 1997-2019,” [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html [2] S. H. Lewis, “Optimizing the stage resolution in pipelined, multistage, analog-to-digital converters for video-rate applications,” IEEE Trans. Circuits Syst. II, vol. 39, no. 8, pp. 516–523, Aug. 1992. [3] C. C. Lee, C. Y. Lu, R. Narayanaswamy, J. B. Rizk, “A 12b 70MS/s SAR ADC with digital startup calibration in 14nm CMOS”, 2015 Symposium on VLSI Circuits Digest of Technical Papers, Kyoto, pp. C62-63 [4] M. Inerfield, et al., “An 11.5-ENOB 100-MS/s 8mW Dual-Reference SAR ADC in 28nm CMOS,” IEEE Symp. VLSI Circuits, pp. 192-193, June 2014. [5] C.-C Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin, C.-M. Huang, and C.-H. Huang, “A 10b 100MS/s 1.13mW SAR ADC with binary scaled error compensation,” in IEEE ISSCC Dig. Tech. Papers, pp.386–387, Feb. 2010. [6] Z. Zhang, W.-C Yu and G.-J Xie, “ A 10-bit 100-MS/s hybrid ADC based on flash-SAR architecture ,” IEEE Int. Conf. on Solid-State and Integrated Circuit Tech. Papers, Aug. 2016, pp. 725-727. [7] T. Y. Wang, et al.” A Bypass-Switching SAR ADC With a Dynamic Proximity Comparator for Biomedical Applications”, IEEE Journal of Solid-State Circuits, vol. 53, Issue: 6, pp. 1747–1754, June, 2018 [8] Y.-H. Chung, C.-W. Yen, and M.-H. Wu, “A 24-μW 12-b 1-MS/s SAR ADC with two-step decision DAC switching in 110-nm CMOS,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 24, no. 11, pp. 3334–3344, Nov. 2016. [9] A. O'Driscoll, et al., “Adaptive Resolution ADC Array for an Implantable Neural Sensor,” IEEE Trans. on Biomedical Circuits and Systems, vol. 5, no. 2, pp. 120–130, Apr. 2011. [10] M. Dessouky and A. Kaiser, “Input switch configuration suitable for rail-to-rail operation of switched-opamp circuits,” IEE Electron. Lett., vol. 35, pp. 8-10, Jan. 1999. [11] M. Miyahara, Y. Asada, D. Paik, and A. Matsuzawa, “A low-noise self- calibrating dynamic comparator for high-speed ADCs,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2008, pp. 269–272. [12] W.-H. Tseng, W.-L. Lee, C.-Y. Huang, and P.-C. Chiu, “A 12-bit 104 MS/s SAR ADC in 28 nm CMOS for Digitally-Assisted Wireless Transmitters,” IEEE J. Solid-State Circuits, vol. 51, no. 10, pp. 2222-2231, Jul. 2016. [13] W. Liu, P. Huang, and Y. Chiu, “A 12 b 22.5/45 MS/s 3.0 mW 0.059 mm2 CMOS SAR ADC achieving over 90 dB SFDR,” in IEEE ISSCC Dig. Tech. Paper, Feb. 2010, pp. 380–381. [14] Y.-H. Chung, M.-H. Wu, and H.-S. Li, “A 12-bit 8.47-fJ/conversion-step capacitor-swapping SAR ADC in 110-nm CMOS,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 1, pp. 10–18, Jan. 2015. [15] Y.-S. Hu, C.-H. Shih, H.-T. Tai, H.-W. Chen, H.-S. Chen , “A 0.6V 6.4fJ/conversion-step 10-bit 150MS/s subranging SAR ADC in 40-nm CMOS,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2014, pp. 81. [16] M.-H. Wu, Y.-H. Chung, and H.-S. Li, “A 12-bit 8.47-fJ/Conversion-Step 1-MS/s SAR ADC using Capacitor-Swapping Technique,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2012, pp. 157-160. [17] S. W. Chen and R. W. Brodersen, “A 6-bit 600-MS/s 5.3-mW Asynchronous ADC in 0.13-μm CMOS,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2669–2680, 2006. [18] C.-C Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, ”A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp.731-740, Apr. 2010. [19] P. Harpe, E. Cantatore, and A. van Roermund, "A 2.2/2.7fJ/conversion-step 10/12b 40kS/s SAR ADC with Data-Driven Noise Reduction," in ISSCC, Feb. 2013, pp. 270-271. [20] A. H. T. Chang, “Low-Power High-Performance SAR ADC With Redundancy and Digital Background Calibration,” Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci., Massachusetts Inst. Technol., Cambridge, MA, USA, 2013. [21] G.-Y. Huang, S.-J. Chang, C.-C. Liu, and Y.-Z. Lin, “A 1-μW 10-bit 200-kS/s SAR ADC with a bypass window for biomedical applications,” IEEE J. Solid–State Circuits, vol. 47, no. 11, pp. 2783–2795, Nov. 2012. [22] C. C. Liu, S. J. Chang, G. Y. Huang, Y. Z. Lin, and C.M.Huang, “A1V 11 fJ/conversion-step 10 bit 10 MS/s asynchronous SAR-ADC in 0.18 μm CMOS,” in IEEE Symp. VLSI Circuits Dig., 2010, pp. 241–242.
|